Given [tex]\( f(x) \)[/tex], evaluate [tex]\( f(6) \)[/tex].

[tex]\[
\begin{array}{c}
f(x) = \frac{2}{3} x^2 + \frac{1}{2} x - 2 \\
f(6) = \, ?
\end{array}
\][/tex]



Answer :

To evaluate the function [tex]\( f(x) \)[/tex] at [tex]\( x = 6 \)[/tex], we will plug in the value of [tex]\( x = 6 \)[/tex] into the function [tex]\( f(x) = \frac{2}{3} x^2 + \frac{1}{2} x - 2 \)[/tex] and simplify.

Here are the steps to find [tex]\( f(6) \)[/tex]:

1. Start with the function [tex]\( f(x) = \frac{2}{3} x^2 + \frac{1}{2} x - 2 \)[/tex].
2. Substitute [tex]\( x = 6 \)[/tex] into the function:
[tex]\[ f(6) = \frac{2}{3} (6)^2 + \frac{1}{2} (6) - 2 \][/tex]
3. Calculate [tex]\( (6)^2 \)[/tex]:
[tex]\[ (6)^2 = 36 \][/tex]
4. Now substitute the value back into the expression:
[tex]\[ f(6) = \frac{2}{3} \cdot 36 + \frac{1}{2} \cdot 6 - 2 \][/tex]
5. Multiply [tex]\(\frac{2}{3}\)[/tex] by 36:
[tex]\[ \frac{2}{3} \cdot 36 = 24 \][/tex]
6. Multiply [tex]\(\frac{1}{2}\)[/tex] by 6:
[tex]\[ \frac{1}{2} \cdot 6 = 3 \][/tex]
7. Now sum up the terms:
[tex]\[ f(6) = 24 + 3 - 2 \][/tex]
8. Combine the terms:
[tex]\[ 24 + 3 = 27 \][/tex]
9. Subtract 2 from 27:
[tex]\[ 27 - 2 = 25 \][/tex]

Therefore, the value of [tex]\( f(6) \)[/tex] is:
[tex]\[ f(6) = 25 \][/tex]