Given [tex]$f(x)$[/tex], evaluate [tex]$f(4)$[/tex].

[tex]\[
\begin{array}{c}
f(x)=2x^2-6x+17 \\
f(4)= \, ?
\end{array}
\][/tex]



Answer :

To evaluate [tex]\( f(4) \)[/tex] given the function [tex]\( f(x) = 2x^2 - 6x + 17 \)[/tex], follow these steps:

1. Substitute [tex]\( x = 4 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(4) = 2(4)^2 - 6(4) + 17 \][/tex]

2. Calculate [tex]\( (4)^2 \)[/tex]:
[tex]\[ (4)^2 = 16 \][/tex]

3. Multiply [tex]\( 2 \)[/tex] by the result from step 2:
[tex]\[ 2 \times 16 = 32 \][/tex]

4. Calculate [tex]\( 6 \times 4 \)[/tex]:
[tex]\[ 6 \times 4 = 24 \][/tex]

5. Substitute the results from steps 3 and 4 back into the function:
[tex]\[ f(4) = 32 - 24 + 17 \][/tex]

6. Perform the subtraction [tex]\( 32 - 24 \)[/tex]:
[tex]\[ 32 - 24 = 8 \][/tex]

7. Add the result from step 6 to 17:
[tex]\[ 8 + 17 = 25 \][/tex]

Therefore, [tex]\( f(4) = 25 \)[/tex].