Answer :
Sure, let's go through each row of the table step by step and solve the expressions.
### Row 1
- [tex]$153 + 62 = 62 + 153$[/tex]
- This is simply demonstrating the commutative property of addition. Both expressions evaluate to [tex]$215$[/tex].
- [tex]$17 \times 2 = 2 \times 17$[/tex]
- This is demonstrating the commutative property of multiplication. Both expressions evaluate to [tex]$34$[/tex].
- [tex]$12 \times$[/tex]
- This is incomplete and we need more information to solve it.
### Row 2
- [tex]$50 + 23 = 23 + 50$[/tex]
- This is demonstrating the commutative property of addition. Both expressions evaluate to [tex]$73$[/tex].
- [tex]$75 \times 5 = 15 \times \_:$[/tex]
- Let's solve [tex]$75 \times 5$[/tex] first. It equals [tex]$375$[/tex].
- Now, solve for the placeholder:
[tex]$15 \times x = 375$[/tex]
Dividing both sides by [tex]$15$[/tex], we get:
[tex]$x = 375 / 15 = 25$[/tex]
- [tex]$12 + \_$[/tex]
- This is incomplete and needs more information to solve.
### Row 3
- [tex]$33 + 33 = 11 \times 6$[/tex]
- [tex]$33 + 33 = 66$[/tex]
- [tex]$11 \times 6 = 66$[/tex]
- Both sides of the equation are equal and validate each other.
- [tex]$230 \times 4 = $[/tex]
- Calculate [tex]$230 \times 4 = 920$[/tex]
- [tex]$513$[/tex]
- This is isolated and needs context to solve.
### Row 4
- [tex]$60 + 52 = 100 + 12$[/tex]
- [tex]$60 + 52 = 112$[/tex]
- [tex]$100 + 12 = 112$[/tex]
- Both sides of the equation are equal and validate each other.
- [tex]$4 \times 8 = 16 \times \_$[/tex]
- Let's solve [tex]$4 \times 8$[/tex] first. It equals [tex]$32$[/tex].
- Now, solve for the placeholder:
[tex]$16 \times x = 32$[/tex]
Dividing both sides by [tex]$16$[/tex], we get:
[tex]$x = 32 / 16 = 2$[/tex]
- [tex]$25$[/tex]
- This is isolated and needs context to solve.
### Row 5
- [tex]$6 \times 7 = $[/tex]
- Calculate [tex]$6 \times 7 = 42$[/tex]
- [tex]$170 + 20 = 19 x$[/tex]
- Let's solve [tex]$170 + 20$[/tex] first. It equals [tex]$190$[/tex].
- Now, solve for the placeholder:
[tex]$19 \times x = 190$[/tex]
Dividing both sides by [tex]$19$[/tex], we get:
[tex]$x = 190 / 19 = 10$[/tex]
- [tex]$110$[/tex]
- This is isolated and needs context to solve.
Here are the results of the operations:
\begin{tabular}{|c|c|c|}
\hline [tex]$153+62=62+153$[/tex] & [tex]$17 \times 2=2 \times 17$[/tex] & [tex]$12 \times$[/tex] \\
\hline [tex]$50 + 23=23+50$[/tex] & [tex]$75 \times 5=15 \times 25$[/tex] & [tex]$12+$[/tex] \\
\hline [tex]$33+33=11 \times 6$[/tex] & [tex]$230 \times 4=$[/tex] & 513 \\
\hline [tex]$60+52=100+12$[/tex] & [tex]$4 \times 8=16 \times 2$[/tex] & 25 \\
\hline [tex]$6 \times 7=42$[/tex] & [tex]$170 + 20=19 \times 10$[/tex] & 110 \\
\hline
\end{tabular}
### Row 1
- [tex]$153 + 62 = 62 + 153$[/tex]
- This is simply demonstrating the commutative property of addition. Both expressions evaluate to [tex]$215$[/tex].
- [tex]$17 \times 2 = 2 \times 17$[/tex]
- This is demonstrating the commutative property of multiplication. Both expressions evaluate to [tex]$34$[/tex].
- [tex]$12 \times$[/tex]
- This is incomplete and we need more information to solve it.
### Row 2
- [tex]$50 + 23 = 23 + 50$[/tex]
- This is demonstrating the commutative property of addition. Both expressions evaluate to [tex]$73$[/tex].
- [tex]$75 \times 5 = 15 \times \_:$[/tex]
- Let's solve [tex]$75 \times 5$[/tex] first. It equals [tex]$375$[/tex].
- Now, solve for the placeholder:
[tex]$15 \times x = 375$[/tex]
Dividing both sides by [tex]$15$[/tex], we get:
[tex]$x = 375 / 15 = 25$[/tex]
- [tex]$12 + \_$[/tex]
- This is incomplete and needs more information to solve.
### Row 3
- [tex]$33 + 33 = 11 \times 6$[/tex]
- [tex]$33 + 33 = 66$[/tex]
- [tex]$11 \times 6 = 66$[/tex]
- Both sides of the equation are equal and validate each other.
- [tex]$230 \times 4 = $[/tex]
- Calculate [tex]$230 \times 4 = 920$[/tex]
- [tex]$513$[/tex]
- This is isolated and needs context to solve.
### Row 4
- [tex]$60 + 52 = 100 + 12$[/tex]
- [tex]$60 + 52 = 112$[/tex]
- [tex]$100 + 12 = 112$[/tex]
- Both sides of the equation are equal and validate each other.
- [tex]$4 \times 8 = 16 \times \_$[/tex]
- Let's solve [tex]$4 \times 8$[/tex] first. It equals [tex]$32$[/tex].
- Now, solve for the placeholder:
[tex]$16 \times x = 32$[/tex]
Dividing both sides by [tex]$16$[/tex], we get:
[tex]$x = 32 / 16 = 2$[/tex]
- [tex]$25$[/tex]
- This is isolated and needs context to solve.
### Row 5
- [tex]$6 \times 7 = $[/tex]
- Calculate [tex]$6 \times 7 = 42$[/tex]
- [tex]$170 + 20 = 19 x$[/tex]
- Let's solve [tex]$170 + 20$[/tex] first. It equals [tex]$190$[/tex].
- Now, solve for the placeholder:
[tex]$19 \times x = 190$[/tex]
Dividing both sides by [tex]$19$[/tex], we get:
[tex]$x = 190 / 19 = 10$[/tex]
- [tex]$110$[/tex]
- This is isolated and needs context to solve.
Here are the results of the operations:
\begin{tabular}{|c|c|c|}
\hline [tex]$153+62=62+153$[/tex] & [tex]$17 \times 2=2 \times 17$[/tex] & [tex]$12 \times$[/tex] \\
\hline [tex]$50 + 23=23+50$[/tex] & [tex]$75 \times 5=15 \times 25$[/tex] & [tex]$12+$[/tex] \\
\hline [tex]$33+33=11 \times 6$[/tex] & [tex]$230 \times 4=$[/tex] & 513 \\
\hline [tex]$60+52=100+12$[/tex] & [tex]$4 \times 8=16 \times 2$[/tex] & 25 \\
\hline [tex]$6 \times 7=42$[/tex] & [tex]$170 + 20=19 \times 10$[/tex] & 110 \\
\hline
\end{tabular}