Given [tex]\( f(x) \)[/tex], evaluate [tex]\( f(-6) \)[/tex].

[tex]\[
\begin{array}{c}
f(x) = 2x^2 + 5x - \frac{x}{3} \\
f(-6) = [?]
\end{array}
\][/tex]



Answer :

To evaluate [tex]\( f(-6) \)[/tex] for the function [tex]\( f(x) = 2x^2 + 5x - \frac{x}{3} \)[/tex], follow these steps:

1. Substitute [tex]\( x = -6 \)[/tex] into the function:

[tex]\[ f(-6) = 2(-6)^2 + 5(-6) - \frac{-6}{3} \][/tex]

2. Calculate each term individually:

- First term: [tex]\( 2(-6)^2 \)[/tex]
[tex]\[ (-6)^2 = 36 \][/tex]
[tex]\[ 2 \times 36 = 72 \][/tex]

- Second term: [tex]\( 5(-6) \)[/tex]
[tex]\[ 5 \times (-6) = -30 \][/tex]

- Third term: [tex]\( -\frac{-6}{3} \)[/tex]
[tex]\[ \frac{-6}{3} = -2 \][/tex]
[tex]\[ -(-2) = 2 \][/tex]

3. Combine the results:

[tex]\[ f(-6) = 72 - 30 + 2 \][/tex]

4. Simplify the expression:

[tex]\[ f(-6) = 72 - 30 + 2 = 44 \][/tex]

Therefore, the value of [tex]\( f(-6) \)[/tex] is [tex]\( 44.0 \)[/tex].