The functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex] are defined as follows:

[tex]\[ f(x) = 5x + 2 \][/tex]
[tex]\[ g(x) = 2x^2 - x \][/tex]

Find [tex]\( f(-7) \)[/tex] and [tex]\( g(-5) \)[/tex]. Simplify your answers as much as possible.

[tex]\[ f(-7) = \square \][/tex]
[tex]\[ g(-5) = \square \][/tex]



Answer :

Let's go through the problem step-by-step.

The given functions are:
[tex]\[ f(x) = 5x + 2 \][/tex]
[tex]\[ g(x) = 2x^2 - x \][/tex]

We are asked to find [tex]\( f(-7) \)[/tex] and [tex]\( g(-5) \)[/tex].

### Calculating [tex]\( f(-7) \)[/tex]:

1. Substitute [tex]\( x = -7 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(-7) = 5(-7) + 2 \][/tex]

2. Simplify the expression inside the function:
[tex]\[ f(-7) = -35 + 2 \][/tex]

3. Combine the terms:
[tex]\[ f(-7) = -33 \][/tex]

So,
[tex]\[ f(-7) = -33 \][/tex]

### Calculating [tex]\( g(-5) \)[/tex]:

1. Substitute [tex]\( x = -5 \)[/tex] into the function [tex]\( g(x) \)[/tex]:
[tex]\[ g(-5) = 2(-5)^2 - (-5) \][/tex]

2. Simplify the squared term and then the entire expression:
[tex]\[ g(-5) = 2(25) + 5 \][/tex]

3. Multiply and add/subtract the necessary values:
[tex]\[ g(-5) = 50 + 5 \][/tex]

4. Combine the terms:
[tex]\[ g(-5) = 55 \][/tex]

So,
[tex]\[ g(-5) = 55 \][/tex]

Hence, the simplified answers are:
[tex]\[ f(-7) = -33 \][/tex]
[tex]\[ g(-5) = 55 \][/tex]