[tex]\[ y \][/tex] varies directly with [tex]\[ x \][/tex]. [tex]\[ y \][/tex] is 10 when [tex]\[ x \][/tex] is 8. What is [tex]\[ x \][/tex] when [tex]\[ y \][/tex] is 30?

[tex]\[ x = \][/tex]
[tex]\[ \square \][/tex]
[tex]\[ \square \][/tex]



Answer :

To determine the value of [tex]\( x \)[/tex] when [tex]\( y \)[/tex] is 30, given that [tex]\( y \)[/tex] varies directly with [tex]\( x \)[/tex], we follow these steps:

1. Understand Direct Variation:
When [tex]\( y \)[/tex] varies directly with [tex]\( x \)[/tex], it means there is a constant ratio [tex]\( k \)[/tex] between [tex]\( y \)[/tex] and [tex]\( x \)[/tex]. This relationship can be written as:
[tex]\[ y = kx \][/tex]

2. Find the Constant of Proportionality:
We are given that [tex]\( y \)[/tex] is 10 when [tex]\( x \)[/tex] is 8. Using these values, we can find the constant [tex]\( k \)[/tex].
[tex]\[ k = \frac{y}{x} = \frac{10}{8} = 1.25 \][/tex]

3. Set Up the Equation with the Found Constant:
To find [tex]\( x \)[/tex] when [tex]\( y \)[/tex] is 30, we use the same relationship [tex]\( y = kx \)[/tex]. We know that:
[tex]\[ y = 30 \][/tex]
and we have already determined that [tex]\( k = 1.25 \)[/tex]. So we have:
[tex]\[ 30 = 1.25x \][/tex]

4. Solve for [tex]\( x \)[/tex]:
To find [tex]\( x \)[/tex], solve the equation for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{30}{1.25} = 24 \][/tex]

Therefore, when [tex]\( y \)[/tex] is 30, [tex]\( x \)[/tex] is [tex]\( 24 \)[/tex].

So, the value of [tex]\( x \)[/tex] is:
[tex]\[ x = 24 \][/tex]