Select the correct answer.

For what value of [tex]$x$[/tex] is [tex]$\sin x = \cos 19^{\circ}$[/tex], where [tex][tex]$0^{\circ} \ \textless \ x \ \textless \ 90^{\circ}$[/tex][/tex]?

A. [tex]38^{\circ}[/tex]

B. [tex]71^{\circ}[/tex]

C. [tex]26^{\circ}[/tex]

D. [tex]19^{\circ}[/tex]



Answer :

To solve the equation [tex]\(\sin x = \cos 19^\circ\)[/tex] where [tex]\(0^\circ < x < 90^\circ\)[/tex], we can use a fundamental trigonometric identity.

The identity states that for any angle [tex]\(\theta\)[/tex]:
[tex]\[ \sin(\theta) = \cos(90^\circ - \theta) \][/tex]

Given [tex]\(\sin x = \cos 19^\circ\)[/tex], let's express [tex]\(\cos 19^\circ\)[/tex] in terms of sine:
[tex]\[ \cos 19^\circ = \sin (90^\circ - 19^\circ) \][/tex]

Thus, the equation [tex]\(\sin x = \cos 19^\circ\)[/tex] becomes:
[tex]\[ \sin x = \sin (90^\circ - 19^\circ) \][/tex]

Since [tex]\(\sin x = \sin (90^\circ - 19^\circ)\)[/tex], we can equate the angles:
[tex]\[ x = 90^\circ - 19^\circ \][/tex]

Now, perform the calculation:
[tex]\[ x = 71^\circ \][/tex]

Therefore, the value of [tex]\(x\)[/tex] that satisfies the equation [tex]\(\sin x = \cos 19^\circ\)[/tex] is [tex]\(x = 71^\circ\)[/tex].

Thus, the correct answer is:
[tex]\[ \boxed{71^\circ} \][/tex]

Hence, the correct choice is B. 71 degrees.