Answer :

Sure! Let's factor the polynomial expression [tex]\( d^2 - 3d - 54 \)[/tex] step-by-step.

1. Write down the polynomial:
[tex]\[ d^2 - 3d - 54 \][/tex]

2. Look for two numbers that multiply to the constant term (-54) and add up to the coefficient of the linear term (-3):

We're looking for two numbers, say [tex]\(a\)[/tex] and [tex]\(b\)[/tex], such that:
[tex]\[ a \cdot b = -54 \][/tex]
and
[tex]\[ a + b = -3 \][/tex]

3. Find the pairs of factors:

Consider the possible pairs of factors of -54:
[tex]\[ \begin{align*} (1, -54) & \quad \text{(Sum: 1 + (-54) = -53)} \\ (-1, 54) & \quad \text{(Sum: -1 + 54 = 53)} \\ (2, -27) & \quad \text{(Sum: 2 + (-27) = -25)} \\ (-2, 27) & \quad \text{(Sum: -2 + 27 = 25)} \\ (3, -18) & \quad \text{(Sum: 3 + (-18) = -15)} \\ (-3, 18) & \quad \text{(Sum: -3 + 18 = 15)} \\ (6, -9) & \quad \text{(Sum: 6 + (-9) = -3)} \end{align*} \][/tex]

Notice that the pair [tex]\((6, -9)\)[/tex] sums to -3.

4. Rewrite the middle term using the found pair:

The quadratic can be rewritten as:
[tex]\[ d^2 - 9d + 6d - 54 \][/tex]

5. Factor by grouping:

Group the terms into two pairs:
[tex]\[ (d^2 - 9d) + (6d - 54) \][/tex]

Factor out the greatest common factor (GCF) from each group:
[tex]\[ d(d - 9) + 6(d - 9) \][/tex]

6. Factor out the common binomial factor:

Since both terms have a common factor of [tex]\((d - 9)\)[/tex]:
[tex]\[ (d - 9)(d + 6) \][/tex]

So, the factored form of [tex]\( d^2 - 3d - 54 \)[/tex] is:
[tex]\[ (d - 9)(d + 6) \][/tex]