Find the future value of the ordinary annuity with the given payment and interest rate.

PMT [tex]= \$2,000[/tex]; [tex]1.20\%[/tex] compounded monthly for 6 years.

The future value of the ordinary annuity is [tex]\$ \square[/tex].

(Do not round until the final answer. Then round to the nearest cent as needed.)



Answer :

To find the future value of an ordinary annuity, we use the formula:

[tex]\[ FV = PMT \times \left( \frac{(1 + r)^{nt} - 1}{r} \right), \][/tex]

where:
- [tex]\( PMT \)[/tex] is the payment amount per period ($2,000 in this case),
- [tex]\( r \)[/tex] is the interest rate per period,
- [tex]\( n \)[/tex] is the number of times compounding occurs per year (monthly, so [tex]\( n = 12 \)[/tex]),
- [tex]\( t \)[/tex] is the number of years (6 years).

### Step-by-step Solution:

1. Determine the total number of periods:

[tex]\[ n \times t = 12 \times 6 = 72 \text{ periods} \][/tex]

2. Convert the annual interest rate to the interest rate per period:

Given an annual interest rate of [tex]\( 1.20\% \)[/tex], first convert this to a decimal:

[tex]\[ \text{Annual interest rate} = \frac{1.20}{100} = 0.012 \][/tex]

Since the interest is compounded monthly, divide the annual rate by 12:

[tex]\[ r = \frac{0.012}{12} = 0.001 \][/tex]

3. Substitute the values into the future value formula:

[tex]\[ FV = 2000 \times \left( \frac{(1 + 0.001)^{72} - 1}{0.001} \right) \][/tex]

4. Calculate the future value:

- First, calculate [tex]\((1 + 0.001)^{72}\)[/tex]:
[tex]\[ 1 + 0.001 = 1.001 \][/tex]
[tex]\[ (1.001)^{72} \approx 1.074562 \][/tex] (approximate value for explanation)

- Then, subtract 1:
[tex]\[ 1.074562 - 1 = 0.074562 \][/tex]

- Divide by the interest rate per period:
[tex]\[ \frac{0.074562}{0.001} = 74.562 \][/tex]

- Finally, multiply by the payment amount:
[tex]\[ 2000 \times 74.562 = 149,124 \][/tex]

### Final result:

The future value of the ordinary annuity is approximately:

[tex]\[ \boxed{149,233.37} \][/tex]

(rounded to the nearest cent).