Answer :

Let's break down the solution step-by-step with all the calculations.

1. Convert the mass of carbon monoxide (CO) from milligrams to grams:

Given mass: 280 mg

Conversion:
[tex]\[ 280 \, \text{mg} = \frac{280}{1000} \, \text{g} = 0.28 \, \text{g} \][/tex]

2. Determine the molar mass of CO:

- Carbon (C) has a molar mass of 12 g/mol.
- Oxygen (O) has a molar mass of 16 g/mol.

Therefore, the molar mass of CO:
[tex]\[ \text{Molar mass of CO} = 12 \, \text{g/mol} + 16 \, \text{g/mol} = 28 \, \text{g/mol} \][/tex]

3. Calculate the number of moles of CO in 280 mg (0.28 g):

Use the formula:
[tex]\[ \text{Number of moles} = \frac{\text{mass (g)}}{\text{molar mass (g/mol)}} \][/tex]
[tex]\[ \text{Number of moles of CO} = \frac{0.28 \, \text{g}}{28 \, \text{g/mol}} = 0.01 \, \text{moles} \][/tex]

4. Calculate the number of moles of CO in [tex]$2 \times 10^{21}$[/tex] molecules:

Given:
- Avogadro's number = [tex]\(6.022 \times 10^{23}\)[/tex] molecules/mole

Use the formula to find the number of moles from molecules:
[tex]\[ \text{Number of moles} = \frac{\text{number of molecules}}{\text{Avogadro's number}} \][/tex]
[tex]\[ \text{Number of moles removed} = \frac{2 \times 10^{21} \, \text{molecules}}{6.022 \times 10^{23} \, \text{molecules/mol}} \approx 0.003321 \, \text{moles} \][/tex]

5. Determine the number of moles of CO remaining after removal:

Subtract the number of moles removed from the initial number of moles:
[tex]\[ \text{Number of moles left} = 0.01 \, \text{moles (initial)} - 0.003321 \, \text{moles (removed)} = 0.006679 \, \text{moles} \][/tex]

Therefore, after removing [tex]$2 \times 10^{21}$[/tex] molecules from 280 mg of CO, the number of moles of CO left is approximately [tex]\(0.006679\)[/tex] moles.