Answered

Solve the following equation, giving your answers in simplified form.

[tex]\[ \frac{5}{x+2} + \frac{3}{x-3} = 2 \][/tex]



Answer :

To solve the equation [tex]\(\frac{5}{x+2} + \frac{3}{x-3} = 2\)[/tex], we will go through the following steps:

1. Combine the fractions on the left-hand side.
2. Clear the denominators by multiplying through by the common denominator.
3. Simplify the resulting equation.
4. Solve for [tex]\(x\)[/tex].
5. Check the solutions in the original equation to ensure they are valid.

Let's begin:

### Step 1: Combine the fractions
We need a common denominator to combine the fractions on the left-hand side. The common denominator of [tex]\(x+2\)[/tex] and [tex]\(x-3\)[/tex] is [tex]\((x+2)(x-3)\)[/tex]. Rewriting the fractions with this common denominator, we have:
[tex]\[ \frac{5(x-3)}{(x+2)(x-3)} + \frac{3(x+2)}{(x+2)(x-3)}. \][/tex]

Combining these fractions, we get:
[tex]\[ \frac{5(x-3) + 3(x+2)}{(x+2)(x-3)} = 2. \][/tex]

### Step 2: Clear the denominators
Multiply both sides of the equation by the common denominator [tex]\((x+2)(x-3)\)[/tex] to clear the fractions:
[tex]\[ 5(x-3) + 3(x+2) = 2(x+2)(x-3). \][/tex]

### Step 3: Simplify
Expand both sides of the equation:
[tex]\[ 5x - 15 + 3x + 6 = 2(x^2 - x - 6). \][/tex]

Combine like terms on the left-hand side:
[tex]\[ 8x - 9 = 2x^2 - 2x - 12. \][/tex]

Move all terms to one side to set the equation to zero:
[tex]\[ 2x^2 - 2x - 12 - 8x + 9 = 0. \][/tex]

Simplify further:
[tex]\[ 2x^2 - 10x - 3 = 0. \][/tex]

### Step 4: Solve for [tex]\(x\)[/tex]
We have a quadratic equation [tex]\(2x^2 - 10x - 3 = 0\)[/tex].

Now, we can use the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 2\)[/tex], [tex]\(b = -10\)[/tex], and [tex]\(c = -3\)[/tex]:

[tex]\[ x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(2)(-3)}}{2(2)}. \][/tex]

Simplifying inside the square root:
[tex]\[ x = \frac{10 \pm \sqrt{100 + 24}}{4}, \][/tex]

[tex]\[ x = \frac{10 \pm \sqrt{124}}{4}, \][/tex]

[tex]\[ x = \frac{10 \pm 2\sqrt{31}}{4}, \][/tex]

[tex]\[ x = \frac{5 \pm \sqrt{31}}{2}. \][/tex]

So, the solutions to the equation are:
[tex]\[ x = \frac{5 - \sqrt{31}}{2} \quad \text{and} \quad x = \frac{5 + \sqrt{31}}{2}. \][/tex]

### Step 5: Check the solutions
Finally, we should check these solutions in the original equation to verify their validity. Upon substitution, both these values satisfy the original equation [tex]\(\frac{5}{x+2} + \frac{3}{x-3} = 2\)[/tex].

Therefore, the solutions to the equation [tex]\(\frac{5}{x+2} + \frac{3}{x-3} = 2\)[/tex] are:
[tex]\[ \boxed{\frac{5 - \sqrt{31}}{2}} \quad \text{and} \quad \boxed{\frac{5 + \sqrt{31}}{2}}. \][/tex]