Answer :
To determine the domain of the given set of ordered pairs, we need to extract the first element from each pair. The domain of a function is the set of all possible input values, which, in this context, are represented by the first elements in each ordered pair.
Let's list the given ordered pairs:
1. [tex]\((-1, 1)\)[/tex]
2. [tex]\((0, -1)\)[/tex]
3. [tex]\((5, -11)\)[/tex]
4. [tex]\((10, -21)\)[/tex]
The domain consists of the first value from each of these pairs:
- From [tex]\((-1, 1)\)[/tex], the first value is [tex]\(-1\)[/tex].
- From [tex]\((0, -1)\)[/tex], the first value is [tex]\(0\)[/tex].
- From [tex]\((5, -11)\)[/tex], the first value is [tex]\(5\)[/tex].
- From [tex]\((10, -21)\)[/tex], the first value is [tex]\(10\)[/tex].
Thus, the domain is the set containing all these first values:
[tex]\[ \{-1, 0, 5, 10\} \][/tex]
Now we compare this set to the provided answer choices:
A. [tex]\(\{-1, 0, 5, 10\}\)[/tex]
B. [tex]\(\{1, -1, -11, -21\}\)[/tex]
C. [tex]\(\{-1, 1\}\)[/tex]
D. [tex]\(\{-1, 10\}\)[/tex]
The correct answer is:
A. [tex]\(\{-1, 0, 5, 10\}\)[/tex]
Let's list the given ordered pairs:
1. [tex]\((-1, 1)\)[/tex]
2. [tex]\((0, -1)\)[/tex]
3. [tex]\((5, -11)\)[/tex]
4. [tex]\((10, -21)\)[/tex]
The domain consists of the first value from each of these pairs:
- From [tex]\((-1, 1)\)[/tex], the first value is [tex]\(-1\)[/tex].
- From [tex]\((0, -1)\)[/tex], the first value is [tex]\(0\)[/tex].
- From [tex]\((5, -11)\)[/tex], the first value is [tex]\(5\)[/tex].
- From [tex]\((10, -21)\)[/tex], the first value is [tex]\(10\)[/tex].
Thus, the domain is the set containing all these first values:
[tex]\[ \{-1, 0, 5, 10\} \][/tex]
Now we compare this set to the provided answer choices:
A. [tex]\(\{-1, 0, 5, 10\}\)[/tex]
B. [tex]\(\{1, -1, -11, -21\}\)[/tex]
C. [tex]\(\{-1, 1\}\)[/tex]
D. [tex]\(\{-1, 10\}\)[/tex]
The correct answer is:
A. [tex]\(\{-1, 0, 5, 10\}\)[/tex]