What is the solution to [tex]3 + 4 e^{x+1} = 11[/tex]?

A. [tex]x = \ln 2 - 1[/tex]
B. [tex]x = \ln 2 + 1[/tex]
C. [tex]x = \frac{1}{e}[/tex]
D. [tex]x = \frac{e + 2}{e}[/tex]



Answer :

Let's solve the equation [tex]\( 3 + 4 e^{x+1} = 11 \)[/tex] step-by-step and identify which of the given choices matches the solution.

1. Start with the given equation:
[tex]\[ 3 + 4 e^{x+1} = 11 \][/tex]

2. Isolate the exponential term:
[tex]\[ 4 e^{x+1} = 11 - 3 \][/tex]
[tex]\[ 4 e^{x+1} = 8 \][/tex]

3. Divide both sides by 4 to further isolate the exponential term:
[tex]\[ e^{x+1} = \frac{8}{4} \][/tex]
[tex]\[ e^{x+1} = 2 \][/tex]

4. Take the natural logarithm on both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ \ln(e^{x+1}) = \ln(2) \][/tex]

5. Simplify using the property of logarithms [tex]\( \ln(e^y) = y \)[/tex]:
[tex]\[ x + 1 = \ln(2) \][/tex]

6. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \ln(2) - 1 \][/tex]

So, the solution to the equation [tex]\( 3 + 4 e^{x+1} = 11 \)[/tex] is:
[tex]\[ x = \ln(2) - 1 \][/tex]

Comparing this solution with the provided choices:

1. [tex]\( x = \ln 2 - 1 \)[/tex]
2. [tex]\( x = \ln 2 + 1 \)[/tex]
3. [tex]\( x = \frac{1}{e} \)[/tex]
4. [tex]\( x = \frac{e + 2}{e} \)[/tex]

We see that the correct match is:
[tex]\[ x = \ln 2 - 1 \][/tex]