What is the product?

[tex]\[
\begin{array}{l}
\left(x^4\right)\left(3 x^3-2\right)\left(4 x^2+5 x\right)
\end{array}
\][/tex]

A. [tex]\(12 x^9+15 x^8-8 x^6-10 x^5\)[/tex]

B. [tex]\(12 x^{24}+15 x^{12}-8 x^8-10 x^4\)[/tex]

C. [tex]\(12 x^9-10 x^5\)[/tex]

D. [tex]\(12 x^{24}-10 x^4\)[/tex]



Answer :

To determine the product of the given polynomials [tex]\((x^4)(3x^3 - 2)(4x^2 + 5x)\)[/tex], let's go through the solution step-by-step.

1. Expand [tex]\((3x^3 - 2)(4x^2 + 5x)\)[/tex]:
[tex]\[ (3x^3 - 2)(4x^2 + 5x) = (3x^3)(4x^2) + (3x^3)(5x) + (-2)(4x^2) + (-2)(5x) \][/tex]
Simplify each term:
[tex]\[ = 12x^5 + 15x^4 - 8x^2 - 10x \][/tex]

2. Now multiply the result by [tex]\(x^4\)[/tex]:
[tex]\[ x^4(12x^5 + 15x^4 - 8x^2 - 10x) = x^4 \cdot 12x^5 + x^4 \cdot 15x^4 + x^4 \cdot (-8x^2) + x^4 \cdot (-10x) \][/tex]
Simplify each term:
[tex]\[ = 12x^9 + 15x^8 - 8x^6 - 10x^5 \][/tex]

Therefore, the product of the given polynomials [tex]\((x^4)(3x^3 - 2)(4x^2 + 5x)\)[/tex] is:
[tex]\[ 12x^9 + 15x^8 - 8x^6 - 10x^5 \][/tex]
So, the correct answer is:
[tex]\[ 12x^9 + 15x^8 - 8x^6 - 10x^5 \][/tex]