What is the product?

[tex]\[
(7x^2y^3)(3x^5y^8)
\][/tex]

A. [tex]\(10x^7y^{11}\)[/tex]
B. [tex]\(10x^{10}y^{24}\)[/tex]
C. [tex]\(21x^7y^{11}\)[/tex]
D. [tex]\(21x^{10}y^{24}\)[/tex]



Answer :

To find the product of the given expression [tex]\(\left(7 x^2 y^3\right)\left(3 x^5 y^8\right)\)[/tex], follow these steps:

1. Multiply the constants: The constants given are 7 and 3. Multiplying these together, we have:
[tex]\[ 7 \times 3 = 21 \][/tex]

2. Combine the exponents of [tex]\(x\)[/tex]: The expression contains [tex]\(x^2\)[/tex] and [tex]\(x^5\)[/tex]. When multiplying terms with the same base, their exponents are added together:
[tex]\[ x^2 \times x^5 = x^{2+5} = x^7 \][/tex]

3. Combine the exponents of [tex]\(y\)[/tex]: The expression contains [tex]\(y^3\)[/tex] and [tex]\(y^8\)[/tex]. Similarly, add the exponents together:
[tex]\[ y^3 \times y^8 = y^{3+8} = y^{11} \][/tex]

Combining all the parts together, the product of the expression is:
[tex]\[ 21 x^7 y^{11} \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{21 x^7 y^{11}} \][/tex]