What is the product?

[tex]\[ (3x - 6)\left(2x^2 - 7x + 1\right) \][/tex]

A. [tex]\(-12x^2 + 42x - 6\)[/tex]

B. [tex]\(-12x^2 + 21x + 6\)[/tex]

C. [tex]\(6x^3 - 33x^2 + 45x - 6\)[/tex]

D. [tex]\(6x^3 - 27x^2 - 39x + 6\)[/tex]



Answer :

To find the product of the expressions [tex]\((3x - 6)\)[/tex] and [tex]\((2x^2 - 7x + 1)\)[/tex], we'll follow these steps:

1. Distribute [tex]\((3x - 6)\)[/tex] across each term in the polynomial [tex]\((2x^2 - 7x + 1)\)[/tex].

First, distribute [tex]\(3x\)[/tex]:

[tex]\[ 3x \cdot (2x^2) + 3x \cdot (-7x) + 3x \cdot 1 \][/tex]

This gives us:

[tex]\[ 6x^3 - 21x^2 + 3x \][/tex]

Next, distribute [tex]\(-6\)[/tex]:

[tex]\[ -6 \cdot (2x^2) + -6 \cdot (-7x) + -6 \cdot 1 \][/tex]

This gives us:

[tex]\[ -12x^2 + 42x - 6 \][/tex]

2. Combine all the terms obtained from the distributions:

[tex]\[ 6x^3 - 21x^2 + 3x - 12x^2 + 42x - 6 \][/tex]

3. Combine like terms:

Combine the [tex]\(x^2\)[/tex] terms:

[tex]\[ -21x^2 - 12x^2 = -33x^2 \][/tex]

Combine the [tex]\(x\)[/tex] terms:

[tex]\[ 3x + 42x = 45x \][/tex]

So, the polynomial becomes:

[tex]\[ 6x^3 - 33x^2 + 45x - 6 \][/tex]

From the choices given, this matches with:

[tex]\[ \boxed{6x^3 - 33x^2 + 45x - 6} \][/tex]

Therefore, the product of [tex]\((3x - 6)\)[/tex] and [tex]\((2x^2 - 7x + 1)\)[/tex] is [tex]\(\boxed{6x^3 - 33x^2 + 45x - 6}\)[/tex].