Use the elimination method to solve the system of equations. Choose the correct ordered pair.

[tex]
\begin{array}{l}
6x + 2y = 8 \\
12x + y = 22
\end{array}
[/tex]

A. [tex](-3, 3)[/tex]
B. [tex](4, -4)[/tex]
C. [tex](2, -2)[/tex]
D. [tex](-1, 1)[/tex]



Answer :

Sure! Let's solve the system of equations using the elimination method to find the correct ordered pair.

We are given the following system of equations:

[tex]\[ \begin{array}{l} 6x + 2y = 8 \quad \text{(1)} \\ 12x + y = 22 \quad \text{(2)} \end{array} \][/tex]

First, we need to eliminate one of the variables. To do this, we can align the coefficients of [tex]\( y \)[/tex] in both equations and subtract or add them.

Since the coefficient of [tex]\( y \)[/tex] in the second equation is 1, and in the first equation it's 2, we can multiply the second equation by 2 to align the coefficients of [tex]\( y \)[/tex]:

[tex]\[ 2(12x + y) = 2(22) \][/tex]

This simplifies to:

[tex]\[ 24x + 2y = 44 \quad \text{(3)} \][/tex]

Now we have the system:

[tex]\[ \begin{array}{l} 6x + 2y = 8 \quad \text{(1)} \\ 24x + 2y = 44 \quad \text{(3)} \end{array} \][/tex]

Next, we subtract equation (1) from equation (3) to eliminate [tex]\( y \)[/tex]:

[tex]\[ (24x + 2y) - (6x + 2y) = 44 - 8 \][/tex]

Simplifying this, we get:

[tex]\[ 24x + 2y - 6x - 2y = 36 \][/tex]

[tex]\[ 18x = 36 \][/tex]

Solving for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{36}{18} = 2 \][/tex]

Now that we have [tex]\( x = 2 \)[/tex], we substitute it back into one of the original equations to find [tex]\( y \)[/tex]. Let's use equation (1):

[tex]\[ 6x + 2y = 8 \][/tex]

Substitute [tex]\( x = 2 \)[/tex]:

[tex]\[ 6(2) + 2y = 8 \][/tex]

[tex]\[ 12 + 2y = 8 \][/tex]

Solving for [tex]\( y \)[/tex]:

[tex]\[ 2y = 8 - 12 \][/tex]

[tex]\[ 2y = -4 \][/tex]

[tex]\[ y = \frac{-4}{2} = -2 \][/tex]

So, the solution to the system of equations is [tex]\((x, y) = (2, -2)\)[/tex].

Therefore, the correct ordered pair is:

[tex]\[ \boxed{(2, -2)} \][/tex]

And the corresponding choice from the given options is:

C. [tex]\((2, -2)\)[/tex]