Shawn solved the system of equations below and found that [tex]x=3[/tex]. Which ordered pair is the solution to the system?

[tex]\[
\begin{array}{l}
2x + 4y = 34 \\
6x + 2y = 32
\end{array}
\][/tex]

A. [tex](3,7)[/tex]
B. [tex](3,8)[/tex]
C. [tex](3,6)[/tex]
D. [tex](3,9)[/tex]



Answer :

To determine which ordered pair is the solution to the system of equations, we follow these steps:

Given the system of equations:
[tex]\[ \begin{aligned} 1. & \quad 2x + 4y = 34 \\ 2. & \quad 6x + 2y = 32 \end{aligned} \][/tex]

We already know that [tex]\( x = 3 \)[/tex]. We need to find the corresponding [tex]\( y \)[/tex] value to identify the correct ordered pair.

### Step 1: Substitute [tex]\( x = 3 \)[/tex] into the first equation
[tex]\[ 2(3) + 4y = 34 \][/tex]

### Step 2: Simplify and solve for [tex]\( y \)[/tex]
[tex]\[ 6 + 4y = 34 \][/tex]

[tex]\[ 4y = 34 - 6 \][/tex]

[tex]\[ 4y = 28 \][/tex]

[tex]\[ y = \frac{28}{4} \][/tex]

[tex]\[ y = 7 \][/tex]

### Conclusion:
The ordered pair [tex]\((x, y)\)[/tex] that solves the system of equations is [tex]\((3, 7)\)[/tex].

Therefore, the solution to the system of equations is:

A. [tex]\((3, 7)\)[/tex]