To determine which ordered pair is the solution to the system of equations, we follow these steps:
Given the system of equations:
[tex]\[
\begin{aligned}
1. & \quad 2x + 4y = 34 \\
2. & \quad 6x + 2y = 32
\end{aligned}
\][/tex]
We already know that [tex]\( x = 3 \)[/tex]. We need to find the corresponding [tex]\( y \)[/tex] value to identify the correct ordered pair.
### Step 1: Substitute [tex]\( x = 3 \)[/tex] into the first equation
[tex]\[
2(3) + 4y = 34
\][/tex]
### Step 2: Simplify and solve for [tex]\( y \)[/tex]
[tex]\[
6 + 4y = 34
\][/tex]
[tex]\[
4y = 34 - 6
\][/tex]
[tex]\[
4y = 28
\][/tex]
[tex]\[
y = \frac{28}{4}
\][/tex]
[tex]\[
y = 7
\][/tex]
### Conclusion:
The ordered pair [tex]\((x, y)\)[/tex] that solves the system of equations is [tex]\((3, 7)\)[/tex].
Therefore, the solution to the system of equations is:
A. [tex]\((3, 7)\)[/tex]