Use the elimination method to solve the system of equations. Choose the correct ordered pair.

[tex]\[
\begin{array}{l}
12x - y = 25 \\
9x + y = 17
\end{array}
\][/tex]

A. [tex]\((2, -1)\)[/tex]
B. [tex]\((3, -2)\)[/tex]
C. [tex]\((-2, 3)\)[/tex]
D. [tex]\((1, -2)\)[/tex]



Answer :

Certainly! Let's solve the given system of equations using the elimination method.

The system of equations is:
[tex]\[ \begin{array}{l} 12x - y = 25 \\ 9x + y = 17 \end{array} \][/tex]

### Step 1: Add the Equations to Eliminate [tex]\( y \)[/tex]
First, we'll add the two equations together to eliminate [tex]\( y \)[/tex].

[tex]\[ (12x - y) + (9x + y) = 25 + 17 \][/tex]

When we add the two equations, the [tex]\( y \)[/tex] terms will cancel each other out:

[tex]\[ 12x - y + 9x + y = 42 \][/tex]

Simplifying this:

[tex]\[ 21x = 42 \][/tex]

### Step 2: Solve for [tex]\( x \)[/tex]
Next, we'll solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 21:

[tex]\[ x = \frac{42}{21} \][/tex]

[tex]\[ x = 2 \][/tex]

### Step 3: Substitute [tex]\( x \)[/tex] Back into One of the Original Equations
Now, we'll substitute [tex]\( x = 2 \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]. Let's use the second equation [tex]\( 9x + y = 17 \)[/tex]:

[tex]\[ 9(2) + y = 17 \][/tex]

Solving for [tex]\( y \)[/tex]:

[tex]\[ 18 + y = 17 \][/tex]

[tex]\[ y = 17 - 18 \][/tex]

[tex]\[ y = -1 \][/tex]

### Conclusion
The solution to the system of equations is the ordered pair [tex]\( (2, -1) \)[/tex].

So, the correct answer is:
A. [tex]\( (2, -1) \)[/tex]