k236
Answered

Given the function [tex]y = 4x^2 + 3x - 1[/tex] and the domain [tex]\{-1, 0, 2\}[/tex], what is the specified range?



Answer :

To find the specified range of the function [tex]\( y = 4x^2 + 3x - 1 \)[/tex] for the given domain [tex]\(\{-1, 0, 2\}\)[/tex], follow these steps for each [tex]\( x \)[/tex] value in the domain:

1. Evaluate the function at [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 4(-1)^2 + 3(-1) - 1 \][/tex]
[tex]\[ y = 4 \cdot 1 - 3 - 1 \][/tex]
[tex]\[ y = 4 - 3 - 1 \][/tex]
[tex]\[ y = 0 \][/tex]

So, when [tex]\( x = -1 \)[/tex], [tex]\( y = 0 \)[/tex].

2. Evaluate the function at [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 4(0)^2 + 3(0) - 1 \][/tex]
[tex]\[ y = 0 + 0 - 1 \][/tex]
[tex]\[ y = -1 \][/tex]

So, when [tex]\( x = 0 \)[/tex], [tex]\( y = -1 \)[/tex].

3. Evaluate the function at [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 4(2)^2 + 3(2) - 1 \][/tex]
[tex]\[ y = 4 \cdot 4 + 6 - 1 \][/tex]
[tex]\[ y = 16 + 6 - 1 \][/tex]
[tex]\[ y = 21 \][/tex]

So, when [tex]\( x = 2 \)[/tex], [tex]\( y = 21 \)[/tex].

Therefore, the specified range for the given domain [tex]\(\{-1, 0, 2\}\)[/tex] is:
[tex]\[ \{0, -1, 21\} \][/tex]