Answer :
To determine which reflection will transform the original endpoints [tex]\((3,2)\)[/tex] and [tex]\((2,-3)\)[/tex] into the new endpoints [tex]\((3,-2)\)[/tex] and [tex]\((2,3)\)[/tex], let's analyze each possible reflection:
### Original Endpoints:
- [tex]\((3, 2)\)[/tex]
- [tex]\((2, -3)\)[/tex]
### Reflected Endpoints:
- [tex]\((3, -2)\)[/tex]
- [tex]\((2, 3)\)[/tex]
### Reflection across the x-axis:
- For a reflection across the x-axis, the y-coordinates of each point change sign while the x-coordinates remain the same.
- [tex]\((x, y) \rightarrow (x, -y)\)[/tex]
Applying this transformation:
- [tex]\((3, 2) \rightarrow (3, -2)\)[/tex]
- [tex]\((2, -3) \rightarrow (2, 3)\)[/tex]
This matches the given reflected endpoints exactly.
### Reflection across the y-axis:
- For a reflection across the y-axis, the x-coordinates of each point change sign while the y-coordinates remain the same.
- [tex]\((x, y) \rightarrow (-x, y)\)[/tex]
Applying this transformation:
- [tex]\((3, 2) \rightarrow (-3, 2)\)[/tex]
- [tex]\((2, -3) \rightarrow (-2, -3)\)[/tex]
This does not match the given reflected endpoints.
### Reflection across the line [tex]\( y = x \)[/tex]:
- For a reflection across the line [tex]\( y = x \)[/tex], the x- and y-coordinates of each point are swapped.
- [tex]\((x, y) \rightarrow (y, x)\)[/tex]
Applying this transformation:
- [tex]\((3, 2) \rightarrow (2, 3)\)[/tex]
- [tex]\((2, -3) \rightarrow (-3, 2)\)[/tex]
This does not match the given reflected endpoints.
### Reflection across the line [tex]\( y = -x \)[/tex]:
- For a reflection across the line [tex]\( y = -x \)[/tex], the x- and y-coordinates of each point are swapped, and both signs are changed.
- [tex]\((x, y) \rightarrow (-y, -x)\)[/tex]
Applying this transformation:
- [tex]\((3, 2) \rightarrow (-2, -3)\)[/tex]
- [tex]\((2, -3) \rightarrow (3, -2)\)[/tex]
This does not match the given reflected endpoints.
### Conclusion:
Out of all possible reflections, only the reflection across the x-axis accurately transforms the original endpoints [tex]\((3, 2)\)[/tex] and [tex]\((2, -3)\)[/tex] into the reflected endpoints [tex]\((3, -2)\)[/tex] and [tex]\((2, 3)\)[/tex].
So, the correct reflection is:
- A reflection of the line segment across the x-axis.
### Original Endpoints:
- [tex]\((3, 2)\)[/tex]
- [tex]\((2, -3)\)[/tex]
### Reflected Endpoints:
- [tex]\((3, -2)\)[/tex]
- [tex]\((2, 3)\)[/tex]
### Reflection across the x-axis:
- For a reflection across the x-axis, the y-coordinates of each point change sign while the x-coordinates remain the same.
- [tex]\((x, y) \rightarrow (x, -y)\)[/tex]
Applying this transformation:
- [tex]\((3, 2) \rightarrow (3, -2)\)[/tex]
- [tex]\((2, -3) \rightarrow (2, 3)\)[/tex]
This matches the given reflected endpoints exactly.
### Reflection across the y-axis:
- For a reflection across the y-axis, the x-coordinates of each point change sign while the y-coordinates remain the same.
- [tex]\((x, y) \rightarrow (-x, y)\)[/tex]
Applying this transformation:
- [tex]\((3, 2) \rightarrow (-3, 2)\)[/tex]
- [tex]\((2, -3) \rightarrow (-2, -3)\)[/tex]
This does not match the given reflected endpoints.
### Reflection across the line [tex]\( y = x \)[/tex]:
- For a reflection across the line [tex]\( y = x \)[/tex], the x- and y-coordinates of each point are swapped.
- [tex]\((x, y) \rightarrow (y, x)\)[/tex]
Applying this transformation:
- [tex]\((3, 2) \rightarrow (2, 3)\)[/tex]
- [tex]\((2, -3) \rightarrow (-3, 2)\)[/tex]
This does not match the given reflected endpoints.
### Reflection across the line [tex]\( y = -x \)[/tex]:
- For a reflection across the line [tex]\( y = -x \)[/tex], the x- and y-coordinates of each point are swapped, and both signs are changed.
- [tex]\((x, y) \rightarrow (-y, -x)\)[/tex]
Applying this transformation:
- [tex]\((3, 2) \rightarrow (-2, -3)\)[/tex]
- [tex]\((2, -3) \rightarrow (3, -2)\)[/tex]
This does not match the given reflected endpoints.
### Conclusion:
Out of all possible reflections, only the reflection across the x-axis accurately transforms the original endpoints [tex]\((3, 2)\)[/tex] and [tex]\((2, -3)\)[/tex] into the reflected endpoints [tex]\((3, -2)\)[/tex] and [tex]\((2, 3)\)[/tex].
So, the correct reflection is:
- A reflection of the line segment across the x-axis.