The path of a rocket ship is given by the parametric equations [tex]\( x(t) = 3t \)[/tex] and [tex]\( y(t) = 4t^2 + 1 \)[/tex], where [tex]\( t \)[/tex] is the time in seconds after launch. Where is the ship after 10 seconds?

A. [tex]\((3, 4)\)[/tex]
B. [tex]\((3, 5)\)[/tex]
C. [tex]\((30, 401)\)[/tex]
D. [tex]\((30, 501)\)[/tex]



Answer :

To determine the position of the rocket ship after 10 seconds, we will use the given parametric equations [tex]\( x(t) = 3t \)[/tex] and [tex]\( y(t) = 4t^2 + 1 \)[/tex].

1. Calculate the x-coordinate:

The parametric equation for the x-coordinate is given by [tex]\( x(t) = 3t \)[/tex].

Substitute [tex]\( t = 10 \)[/tex] seconds into the equation:
[tex]\[ x(10) = 3 \cdot 10 = 30 \][/tex]

2. Calculate the y-coordinate:

The parametric equation for the y-coordinate is given by [tex]\( y(t) = 4t^2 + 1 \)[/tex].

Substitute [tex]\( t = 10 \)[/tex] seconds into the equation:
[tex]\[ y(10) = 4 \cdot (10)^2 + 1 = 4 \cdot 100 + 1 = 400 + 1 = 401 \][/tex]

3. Determine the coordinates of the ship:

After 10 seconds, the coordinates of the ship are [tex]\( (x(10), y(10)) \)[/tex]:
[tex]\[ (x(10), y(10)) = (30, 401) \][/tex]

Therefore, the position of the rocket ship after 10 seconds is [tex]\( (30, 401) \)[/tex].

The correct answer is:
[tex]\[ (30, 401) \][/tex]