One box of crackers costs [tex]\$1.75[/tex]. The crackers are advertised as "3 boxes for [tex]\$5.25[/tex]." Which proportion can be used to represent the cost of the crackers?

A. [tex]\frac{1}{1.75}=\frac{3}{5.25}[/tex]
B. [tex]\frac{1}{1.75}=\frac{5.25}{3}[/tex]
C. [tex]\frac{1.75}{1}=\frac{3}{5.25}[/tex]
D. [tex]\frac{5.25}{1.75}=\frac{1}{3}[/tex]



Answer :

To determine which proportion correctly represents the cost of the crackers, let's examine each of the provided proportions step-by-step and verify which one holds true.

1. Proportion: [tex]\(\frac{1}{1.75} = \frac{3}{5.25}\)[/tex]

- Calculate the left-hand side:
[tex]\[ \frac{1}{1.75} = \frac{1}{1.75} \approx 0.5714 \][/tex]

- Calculate the right-hand side:
[tex]\[ \frac{3}{5.25} = \frac{3}{5.25} \approx 0.5714 \][/tex]

- Both sides are equal ([tex]\(0.5714 \approx 0.5714\)[/tex]), so this proportion is true.

2. Proportion: [tex]\(\frac{1}{1.75} = \frac{5.25}{3}\)[/tex]

- Calculate the right-hand side:
[tex]\[ \frac{5.25}{3} = \frac{5.25}{3} \approx 1.75 \][/tex]

- Compare to the left-hand side:
[tex]\[ \frac{1}{1.75} \approx 0.5714 \quad \text{(as before)} \][/tex]

- The sides are not equal ([tex]\(0.5714 \neq 1.75\)[/tex]), so this proportion is false.

3. Proportion: [tex]\(\frac{1.75}{1} = \frac{3}{5.25}\)[/tex]

- Calculate the left-hand side:
[tex]\[ \frac{1.75}{1} = 1.75 \][/tex]

- Compare to the right-hand side:
[tex]\[ \frac{3}{5.25} \approx 0.5714 \quad \text{(as before)} \][/tex]

- The sides are not equal ([tex]\(1.75 \neq 0.5714\)[/tex]), so this proportion is false.

4. Proportion: [tex]\(\frac{5.25}{1.75} = \frac{1}{3}\)[/tex]

- Calculate the left-hand side:
[tex]\[ \frac{5.25}{1.75} \approx 3 \][/tex]

- Compare to the right-hand side:
[tex]\[ \frac{1}{3} \approx 0.3333 \][/tex]

- The sides are not equal ([tex]\(3 \neq 0.3333\)[/tex]), so this proportion is false.

After examining all the given proportions, we find that the only true proportion is:

[tex]\[ \boxed{\frac{1}{1.75} = \frac{3}{5.25}} \][/tex]