Answer :

To find the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 3 \)[/tex] for the function [tex]\( f(x) = 2x^2 + 1 \)[/tex], we will substitute [tex]\( x = 3 \)[/tex] into the function and simplify.

Given:
[tex]\[ f(x) = 2x^2 + 1 \][/tex]

Step-by-step solution:

1. Substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\[ f(3) = 2(3)^2 + 1 \][/tex]

2. Calculate [tex]\( 3^2 \)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]

3. Multiply by 2:
[tex]\[ 2 \times 9 = 18 \][/tex]

4. Add 1:
[tex]\[ 18 + 1 = 19 \][/tex]

Therefore, [tex]\( f(3) = 19 \)[/tex].

So the correct value of [tex]\( f(x) \)[/tex] when [tex]\( x = 3 \)[/tex] is [tex]\(\boxed{19}\)[/tex].

Answer:

D. 19

Step-by-step explanation:

f(x) = 2x^2 +1

Let x=3

f(3) = 2 *( 3) ^2 +1

Exponents first:

      = 2 *9 +1

Multiply:

     = 18 +1

Add:

    = 19