k236
Answered

What are the transformations in the equation [tex] y = (x - 2)^2 + 4 [/tex]?

(Choose ALL that apply.)

Select all correct options (MSQ):



Answer :

To identify the transformations applied to the basic function [tex]\( y = x^2 \)[/tex] to obtain the function [tex]\( y = (x-2)^2 + 4 \)[/tex], follow these steps:

1. Start with the basic function [tex]\( y = x^2 \)[/tex]:
- This is the standard parabola opening upwards with its vertex at the origin [tex]\((0,0)\)[/tex].

2. Horizontal Shift:
- The function [tex]\( (x - 2)^2 \)[/tex] modifies the basic function [tex]\( y = x^2 \)[/tex].
- The expression [tex]\( x - 2 \)[/tex] indicates a horizontal shift.
- Specifically, replacing [tex]\( x \)[/tex] with [tex]\( x - 2 \)[/tex] shifts the graph to the right by 2 units.

3. Vertical Shift:
- The function [tex]\( (x-2)^2 + 4 \)[/tex] further modifies the expression [tex]\( (x - 2)^2 \)[/tex].
- Adding 4 to the entire function results in a vertical shift.
- Specifically, adding 4 moves the graph upwards by 4 units.

Taking these transformations into account, the complete set of transformations applied to the basic function [tex]\( y = x^2 \)[/tex] to obtain the function [tex]\( y = (x-2)^2 + 4 \)[/tex] is:
- Shift right by 2 units
- Shift up by 4 units

These are the transformations applied to the given function.