Which ordered pair represents the [tex]$x$[/tex]-intercept for the linear equation [tex]$3y + 4x = 8$[/tex]?

A. [tex]$(0, 2)$[/tex]
B. [tex]$\left(0, \frac{8}{3}\right)$[/tex]
C. [tex]$(2, 0)$[/tex]
D. [tex]$\left(\frac{8}{3}, 0\right)$[/tex]



Answer :

To find the [tex]\( x \)[/tex]-intercept of the linear equation [tex]\( 3y + 4x = 8 \)[/tex], we need to determine the point where the graph of the equation crosses the [tex]\( x \)[/tex]-axis. The [tex]\( x \)[/tex]-intercept occurs when [tex]\( y = 0 \)[/tex].

Here are the steps to find the [tex]\( x \)[/tex]-intercept:

1. Set [tex]\( y \)[/tex] to 0 in the equation:
[tex]\[ 3y + 4x = 8 \][/tex]
[tex]\[ 3(0) + 4x = 8 \][/tex]

2. Simplify the equation:
[tex]\[ 4x = 8 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{8}{4} \][/tex]
[tex]\[ x = 2 \][/tex]

Therefore, the [tex]\( x \)[/tex]-intercept is the point where [tex]\( x = 2 \)[/tex] and [tex]\( y = 0 \)[/tex]. This point is represented as the ordered pair [tex]\((2, 0)\)[/tex].

So, the correct answer is [tex]\((2, 0)\)[/tex].