Answer :

To solve the system of equations:

[tex]\[ \left\{ \begin{array}{l} 2x + y = -4 \\ 3x + 5y = 29 \end{array} \right. \][/tex]

we need to find values for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations simultaneously. Here are the steps:

1. Express [tex]\(y\)[/tex] from the first equation:

[tex]\[ 2x + y = -4 \implies y = -4 - 2x \][/tex]

2. Substitute [tex]\(y\)[/tex] into the second equation:

Substitute [tex]\( y = -4 - 2x \)[/tex] into [tex]\( 3x + 5y = 29 \)[/tex]:

[tex]\[ 3x + 5(-4 - 2x) = 29 \][/tex]

3. Simplify the equation:

[tex]\[ 3x - 20 - 10x = 29 \][/tex]

Combine like terms:

[tex]\[ -7x - 20 = 29 \][/tex]

4. Solve for [tex]\(x\)[/tex]:

Add 20 to both sides:

[tex]\[ -7x = 49 \][/tex]

Divide both sides by -7:

[tex]\[ x = -7 \][/tex]

5. Find [tex]\(y\)[/tex] using the value of [tex]\(x\)[/tex]:

Substitute [tex]\(x = -7\)[/tex] back into the expression for [tex]\(y\)[/tex]:

[tex]\[ y = -4 - 2(-7) \][/tex]

Simplify:

[tex]\[ y = -4 + 14 = 10 \][/tex]

So, the solution to the system of equations is:

[tex]\[ x = -7, \quad y = 10 \][/tex]

Therefore, the values are [tex]\(\boxed{x = -7}\)[/tex] and [tex]\(\boxed{y = 10}\)[/tex].