If [tex]$v = 4i - 4j$[/tex] and [tex]$w = xi + 9j$[/tex], find all numbers [tex][tex]$x$[/tex][/tex] for which [tex]$\| v + w \| = 7$[/tex].



Answer :

To find all values [tex]\(x\)[/tex] such that the magnitude (or norm) of the vector [tex]\(v + w\)[/tex] equals 7, follow these steps:

1. Express the vectors in components:
[tex]\[ v = 4i - 4j \][/tex]
[tex]\[ w = xi + 9j \][/tex]

2. Add the vectors:
[tex]\[ v + w = (4i - 4j) + (xi + 9j) = (4 + x)i + (-4 + 9)j = (4 + x)i + 5j \][/tex]

3. Find the magnitude of [tex]\(v + w\)[/tex]:
The magnitude of a vector [tex]\((a, b)\)[/tex] is given by [tex]\(\sqrt{a^2 + b^2}\)[/tex]:
[tex]\[ \| v + w \| = \sqrt{(4 + x)^2 + 5^2} = \sqrt{(4 + x)^2 + 25} \][/tex]

4. Set up the equation for the magnitude:
We need the magnitude to be equal to 7:
[tex]\[ \sqrt{(4 + x)^2 + 25} = 7 \][/tex]

5. Square both sides of the equation to eliminate the square root:
[tex]\[ (4 + x)^2 + 25 = 49 \][/tex]

6. Solve for [tex]\(x\)[/tex]:
[tex]\[ (4 + x)^2 + 25 = 49 \][/tex]
Subtract 25 from both sides:
[tex]\[ (4 + x)^2 = 24 \][/tex]
Take the square root of both sides:
[tex]\[ 4 + x = \pm \sqrt{24} \][/tex]
Simplify [tex]\(\sqrt{24}\)[/tex]:
[tex]\[ \sqrt{24} = 2\sqrt{6} \][/tex]
Therefore, we have:
[tex]\[ 4 + x = 2\sqrt{6} \quad \text{or} \quad 4 + x = -2\sqrt{6} \][/tex]

7. Solve for [tex]\(x\)[/tex] in each case:
[tex]\[ 4 + x = 2\sqrt{6} \][/tex]
[tex]\[ x = 2\sqrt{6} - 4 \][/tex]
and
[tex]\[ 4 + x = -2\sqrt{6} \][/tex]
[tex]\[ x = -2\sqrt{6} - 4 \][/tex]

So, the values of [tex]\(x\)[/tex] that satisfy the condition [tex]\(\| v + w \| = 7\)[/tex] are:
[tex]\[ x = 2\sqrt{6} - 4 \quad \text{or} \quad x = -2\sqrt{6} - 4 \][/tex]