Given: Triangle [tex]\(PQR\)[/tex] with [tex]\(m \angle P = x\)[/tex], [tex]\(m \angle Q = 3x\)[/tex], and [tex]\(m \angle R = 5x\)[/tex].
Prove: [tex]\(x = 20\)[/tex]
By the triangle sum theorem, the sum of the angles in a triangle is equal to [tex]\(180^\circ\)[/tex]. Therefore, using the given and the triangle sum theorem, [tex]\(m \angle P + m \angle Q + m \angle R = 180^\circ\)[/tex]. Using the substitution property, [tex]\((x) + (3x) + (5x) = 180^\circ\)[/tex]. Simplifying the equation gives [tex]\(9x = 180\)[/tex]. Finally, using the division property of equality, [tex]\(x = 20\)[/tex].