Select the correct answer.

The table below represents a geometric sequence.
\begin{tabular}{|c|c|}
\hline [tex]$n$[/tex] & [tex]$f(n)$[/tex] \\
\hline 1 & 4 \\
\hline 2 & 20 \\
\hline 3 & 100 \\
\hline
\end{tabular}

Determine the recursive function that defines the sequence.

A. [tex]$f(1)=1$[/tex], [tex]$f(n)=10 \cdot f(n-1)$[/tex], for [tex]$n \geq 2$[/tex]

B. [tex]$f(1)=4$[/tex], [tex]$f(n)=16 \cdot f(n-1)$[/tex], for [tex]$n \geq 2$[/tex]

C. [tex]$f(1)=4$[/tex], [tex]$f(n)=5 \cdot f(n-1)$[/tex], for [tex]$n \geq 2$[/tex]

D. [tex]$f(1)=5$[/tex], [tex]$f(n)=4 \cdot f(n-1)$[/tex], for [tex]$n \geq 2$[/tex]



Answer :

To determine the correct recursive function that defines the given geometric sequence, we need to examine the sequence's terms and find a pattern in their growth.

Given:
- [tex]\( f(1) = 4 \)[/tex]
- [tex]\( f(2) = 20 \)[/tex]
- [tex]\( f(3) = 100 \)[/tex]

Let's analyze the given options one by one and check whether they match the provided sequence.

### Option A:
#### [tex]\( f(1) = 1 \)[/tex]
#### [tex]\( f(n) = 10 \cdot f(n-1) \)[/tex] for [tex]\( n \geq 2 \)[/tex]

For [tex]\( n = 1 \)[/tex]:
- [tex]\( f(1) = 1 \)[/tex], does not match [tex]\( f(1) = 4 \)[/tex], so this option is incorrect.

### Option B:
#### [tex]\( f(1) = 4 \)[/tex]
#### [tex]\( f(n) = 16 \cdot f(n-1) \)[/tex] for [tex]\( n \geq 2 \)[/tex]

For [tex]\( n = 2 \)[/tex]:
- [tex]\( f(2) = 16 \cdot f(1) = 16 \cdot 4 = 64 \)[/tex], does not match [tex]\( f(2) = 20 \)[/tex], so this option is incorrect.

### Option C:
#### [tex]\( f(1) = 4 \)[/tex]
#### [tex]\( f(n) = 5 \cdot f(n-1) \)[/tex] for [tex]\( n \geq 2 \)[/tex]

For [tex]\( n = 2 \)[/tex]:
- [tex]\( f(2) = 5 \cdot f(1) = 5 \cdot 4 = 20 \)[/tex], matches [tex]\( f(2) = 20 \)[/tex].

For [tex]\( n = 3 \)[/tex]:
- [tex]\( f(3) = 5 \cdot f(2) = 5 \cdot 20 = 100 \)[/tex], matches [tex]\( f(3) = 100 \)[/tex].

### Option D:
#### [tex]\( f(1) = 5 \)[/tex]
#### [tex]\( f(n) = 4 \cdot f(n-1) \)[/tex] for [tex]\( n \geq 2 \)[/tex]

For [tex]\( n = 1 \)[/tex]:
- [tex]\( f(1) = 5 \)[/tex], does not match [tex]\( f(1) = 4 \)[/tex], so this option is incorrect.

### Conclusion

By checking each option against the terms of the given sequence, we find that only Option C produces the correct terms consistently.

Therefore, the correct recursive function that defines the sequence is:

[tex]\[ f(1) = 4 \][/tex]
[tex]\[ f(n) = 5 \cdot f(n-1) \text{ for } n \geq 2 \][/tex]

So, the correct answer is:

c. [tex]\( f(1) = 4, f(n) = 5 \cdot f(n-1) \text{ for } n \geq 2 \)[/tex]