Answer :
Let's break down how we determine the frequency and relative frequency distributions step by step.
Given the frequency data:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Class Limits} & \text{Frequency (f)} \\ \hline 21-25 & 4 \\ 26-30 & 3 \\ 31-35 & 12 \\ 36-40 & 10 \\ 41-45 & 6 \\ 46-50 & 8 \\ \hline \end{tabular} \][/tex]
To find the relative frequency for each class, we use the formula:
[tex]\[ \text{Relative Frequency} = \left( \frac{f}{n} \right) \times 100 \][/tex]
where [tex]\( n \)[/tex] is the total number of students, which is 48 in this case.
1. For the class interval 21-25:
[tex]\[ \text{Relative Frequency} = \left( \frac{4}{48} \right) \times 100 = 8 \% \][/tex]
2. For the class interval 26-30:
[tex]\[ \text{Relative Frequency} = \left( \frac{3}{48} \right) \times 100 = 6 \% \][/tex]
3. For the class interval 31-35:
[tex]\[ \text{Relative Frequency} = \left( \frac{12}{48} \right) \times 100 = 25 \% \][/tex]
4. For the class interval 36-40:
[tex]\[ \text{Relative Frequency} = \left( \frac{10}{48} \right) \times 100 = 21 \% \][/tex]
5. For the class interval 41-45:
[tex]\[ \text{Relative Frequency} = \left( \frac{6}{48} \right) \times 100 = 12 \% \][/tex]
6. For the class interval 46-50:
[tex]\[ \text{Relative Frequency} = \left( \frac{8}{48} \right) \times 100 = 17 \% \][/tex]
So, the frequency and relative frequency distributions are as follows:
[tex]\[ \begin{tabular}{|c|c|c|} \hline \text{Class Limits} & \text{Frequency (f)} & \text{Relative Frequency} \\ \hline 21-25 & 4 & 8 \% \\ 26-30 & 3 & 6 \% \\ 31-35 & 12 & 25 \% \\ 36-40 & 10 & 21 \% \\ 41-45 & 6 & 12 \% \\ 46-50 & 8 & 17 \% \\ \hline \end{tabular} \][/tex]
This completes the frequency and relative frequency distributions for the given data.
Given the frequency data:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Class Limits} & \text{Frequency (f)} \\ \hline 21-25 & 4 \\ 26-30 & 3 \\ 31-35 & 12 \\ 36-40 & 10 \\ 41-45 & 6 \\ 46-50 & 8 \\ \hline \end{tabular} \][/tex]
To find the relative frequency for each class, we use the formula:
[tex]\[ \text{Relative Frequency} = \left( \frac{f}{n} \right) \times 100 \][/tex]
where [tex]\( n \)[/tex] is the total number of students, which is 48 in this case.
1. For the class interval 21-25:
[tex]\[ \text{Relative Frequency} = \left( \frac{4}{48} \right) \times 100 = 8 \% \][/tex]
2. For the class interval 26-30:
[tex]\[ \text{Relative Frequency} = \left( \frac{3}{48} \right) \times 100 = 6 \% \][/tex]
3. For the class interval 31-35:
[tex]\[ \text{Relative Frequency} = \left( \frac{12}{48} \right) \times 100 = 25 \% \][/tex]
4. For the class interval 36-40:
[tex]\[ \text{Relative Frequency} = \left( \frac{10}{48} \right) \times 100 = 21 \% \][/tex]
5. For the class interval 41-45:
[tex]\[ \text{Relative Frequency} = \left( \frac{6}{48} \right) \times 100 = 12 \% \][/tex]
6. For the class interval 46-50:
[tex]\[ \text{Relative Frequency} = \left( \frac{8}{48} \right) \times 100 = 17 \% \][/tex]
So, the frequency and relative frequency distributions are as follows:
[tex]\[ \begin{tabular}{|c|c|c|} \hline \text{Class Limits} & \text{Frequency (f)} & \text{Relative Frequency} \\ \hline 21-25 & 4 & 8 \% \\ 26-30 & 3 & 6 \% \\ 31-35 & 12 & 25 \% \\ 36-40 & 10 & 21 \% \\ 41-45 & 6 & 12 \% \\ 46-50 & 8 & 17 \% \\ \hline \end{tabular} \][/tex]
This completes the frequency and relative frequency distributions for the given data.