Use Wien's Formula to answer the following:

The brightest color produced by an object at a temperature of 6000 K is at a wavelength of 483 nm. What is the wavelength of the brightest color produced by a 3000 K object?

Formula: [tex]\lambda_1 \max \cdot T_1 = \lambda_2 \max \cdot T_2[/tex]

A. 988 nm
B. 957 nm
C. 966 nm
D. 944 nm



Answer :

To determine the wavelength of the brightest color produced by a 3000 K object, we can use Wien's Displacement Law. The law is given by the formula:

[tex]\[ \lambda_{1\_max} \times T_1 = \lambda_{2\_max} \times T_2 \][/tex]

where:
- [tex]\(\lambda_{1\_max}\)[/tex] is the wavelength of the brightest color for the first object.
- [tex]\(T_1\)[/tex] is the temperature of the first object.
- [tex]\(\lambda_{2\_max}\)[/tex] is the wavelength of the brightest color for the second object.
- [tex]\(T_2\)[/tex] is the temperature of the second object.

Given values:
[tex]\[ T_1 = 6000 \, \text{K} \][/tex]
[tex]\[ \lambda_{1\_max} = 483 \, \text{nm} \][/tex]
[tex]\[ T_2 = 3000 \, \text{K} \][/tex]

We need to find [tex]\(\lambda_{2\_max}\)[/tex].

First, rearrange the formula to solve for [tex]\(\lambda_{2\_max}\)[/tex]:

[tex]\[ \lambda_{2\_max} = \frac{\lambda_{1\_max} \times T_1}{T_2} \][/tex]

Now, plug in the given values:

[tex]\[ \lambda_{2\_max} = \frac{483 \, \text{nm} \times 6000 \, \text{K}}{3000 \, \text{K}} \][/tex]

Next, simplify the calculation:

[tex]\[ \lambda_{2\_max} = \frac{483 \times 6000}{3000} \][/tex]

Finally, calculate the result:

[tex]\[ \lambda_{2\_max} = 966 \, \text{nm} \][/tex]

Thus, the wavelength of the brightest color produced by a 3000 K object is [tex]\(966 \, \text{nm}\)[/tex]. The correct answer from the given options is:
[tex]\[ \boxed{966 \, \text{nm}} \][/tex]