What is the midpoint of the line segment with endpoints [tex]\((-2, -2)\)[/tex] and [tex]\((4, 6)\)[/tex]?

A. [tex]\((2, 4)\)[/tex]

B. [tex]\((1, 4)\)[/tex]

C. [tex]\((1, 2)\)[/tex]

D. [tex]\((2, 2)\)[/tex]



Answer :

To find the midpoint of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], you use the midpoint formula:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

For the given endpoints [tex]\((-2, -2)\)[/tex] and [tex]\((4, 6)\)[/tex]:

1. First, identify the coordinates of the endpoints:
- [tex]\((x_1, y_1) = (-2, -2)\)[/tex]
- [tex]\((x_2, y_2) = (4, 6)\)[/tex]

2. Apply the midpoint formula to find the [tex]\(x\)[/tex]-coordinate of the midpoint:
[tex]\[ \text{Midpoint}_x = \frac{x_1 + x_2}{2} = \frac{-2 + 4}{2} = \frac{2}{2} = 1 \][/tex]

3. Next, apply the midpoint formula to find the [tex]\(y\)[/tex]-coordinate of the midpoint:
[tex]\[ \text{Midpoint}_y = \frac{y_1 + y_2}{2} = \frac{-2 + 6}{2} = \frac{4}{2} = 2 \][/tex]

Therefore, the midpoint of the line segment with endpoints [tex]\((-2, -2)\)[/tex] and [tex]\((4, 6)\)[/tex] is [tex]\((1, 2)\)[/tex].

Thus, the correct answer is:
C. [tex]\((1, 2)\)[/tex]