What is the wavelength of yellow light with a frequency of [tex]5.2 \times 10^{14} \, \text{Hz}[/tex]?

Given:
[tex]c = 3.0 \times 10^8 \, \text{m/s}[/tex]

Be sure to enter both the coefficient and the exponent.

[tex]\[ \lambda = \frac{c}{f} \][/tex]



Answer :

To find the wavelength of a yellow light with a given frequency, we use the fundamental relationship between the speed of light, frequency, and wavelength. The formula for this relationship is:

[tex]\[ \lambda = \frac{c}{f} \][/tex]

where:
- [tex]\(\lambda\)[/tex] is the wavelength
- [tex]\(c\)[/tex] is the speed of light
- [tex]\(f\)[/tex] is the frequency

Given:
- The frequency [tex]\(f\)[/tex] of the yellow light is [tex]\(5.2 \times 10^{14}\)[/tex] Hz
- The speed of light [tex]\(c\)[/tex] is [tex]\(3.0 \times 10^8\)[/tex] m/s

Step-by-step procedure to calculate the wavelength:

1. Set up the formula with the given values:
[tex]\[ \lambda = \frac{3.0 \times 10^8 \, \text{m/s}}{5.2 \times 10^{14} \, \text{Hz}} \][/tex]

2. Divide the coefficients:
[tex]\[ \lambda = \frac{3.0}{5.2} \times \frac{10^8}{10^{14}} \][/tex]

3. Simplify the coefficient division:
[tex]\[ \frac{3.0}{5.2} \approx 0.576923076923 \][/tex]

4. Simplify the exponent division:
[tex]\[ \frac{10^8}{10^{14}} = 10^{8-14} = 10^{-6} \][/tex]

5. Combine the simplified coefficient and exponent:
[tex]\[ \lambda \approx 0.576923076923 \times 10^{-6} \, \text{meters} \][/tex]

6. Express the result in scientific notation:
[tex]\[ 0.576923076923 \approx 5.769230769230769 \times 10^{-1} \][/tex]
Then:
[tex]\[ 0.576923076923 \times 10^{-6} = 5.769230769230769 \times 10^{-1} \times 10^{-6} = 5.769230769230769 \times 10^{-7} \, \text{meters} \][/tex]

Therefore, the wavelength of the yellow light is:

[tex]\[ \boxed{5.769230769230769 \times 10^{-7} \, \text{meters} } \][/tex]

Thus, the wavelength is approximately [tex]\(5.769230769230769 \times 10^{-7}\)[/tex] meters.