The volume of a cube is [tex]$27 n^{27}$[/tex] cubic units. What is the length of one side of the cube?

A. [tex]$3 n^3$[/tex] units
B. [tex][tex]$3 n^9$[/tex][/tex] units
C. [tex]$27 n^3$[/tex] units
D. [tex]$27 n^9$[/tex] units



Answer :

Certainly! Let's find the length of one side of the cube given that the volume of the cube is [tex]\( 27 n^{27} \)[/tex] cubic units.

The formula for the volume [tex]\( V \)[/tex] of a cube, where the side length is [tex]\( s \)[/tex], is:

[tex]\[ V = s^3 \][/tex]

Given the volume of the cube is:

[tex]\[ 27 n^{27} \][/tex]

we need to find [tex]\( s \)[/tex] such that:

[tex]\[ s^3 = 27 n^{27} \][/tex]

To find [tex]\( s \)[/tex], we take the cube root of both sides of the equation:

[tex]\[ s = \sqrt[3]{27 n^{27}} \][/tex]

Now, we simplify this expression. We know that the cube root of a product is the product of the cube roots:

[tex]\[ \sqrt[3]{27 n^{27}} = \sqrt[3]{27} \cdot \sqrt[3]{n^{27}} \][/tex]

First, we find the cube root of 27:

[tex]\[ \sqrt[3]{27} = 3 \][/tex]

Next, we find the cube root of [tex]\( n^{27} \)[/tex]:

[tex]\[ \sqrt[3]{n^{27}} = n^{27/3} = n^9 \][/tex]

Combining these results, we have:

[tex]\[ s = 3 \cdot n^9 \][/tex]

So, the length of one side of the cube is:

[tex]\[ 3 n^9 \, \text{units} \][/tex]

Therefore, the correct answer is:

[tex]\[ 3 n^9 \, \text{units} \][/tex]

Hence, the answer is [tex]\( \boxed{3 n^9} \)[/tex] units.