10. Which of the following inequalities is equivalent to [tex]-3x - 5y \ \textless \ 4y - 6[/tex]?

A. [tex]x \ \textless \ -3y - 2[/tex]

B. [tex]x \ \textgreater \ -3y + 2[/tex]

C. [tex]x \ \textless \ 3y - 2[/tex]

D. [tex]x \ \textgreater \ 3y + 2[/tex]



Answer :

To determine which inequality is equivalent to [tex]\(-3x - 5y < 4y - 6\)[/tex], follow these steps:

1. Start with the original inequality:
[tex]\[ -3x - 5y < 4y - 6 \][/tex]

2. Move all the terms involving [tex]\(y\)[/tex] to the right side:
[tex]\[ -3x < 4y - 6 + 5y \][/tex]

3. Combine like terms on the right side:
[tex]\[ -3x < 9y - 6 \][/tex]

4. Isolate [tex]\(x\)[/tex] by dividing both sides by -3. Remember, when you divide both sides of an inequality by a negative number, the inequality sign flips.
[tex]\[ x > \frac{9y - 6}{-3} \][/tex]

5. Simplify the right side of the inequality:
[tex]\[ x > -3y + 2 \][/tex]

Thus, the inequality that is equivalent to the original expression [tex]\(-3x - 5y < 4y - 6\)[/tex] is:
[tex]\[ x > -3y + 2 \][/tex]

Among the given options, the correct inequality is:

B) [tex]\(x > -3y + 2\)[/tex]