Given a right cone with base area [tex]B[/tex] and height [tex]h[/tex], what is the formula for the volume?

A. [tex]V=\frac{1}{3} B h[/tex]

B. [tex]V=\frac{1}{2} B h[/tex]

C. [tex]V=B h[/tex]

D. [tex]V=-\frac{1}{3} B h[/tex]



Answer :

To solve the problem of finding the volume formula for a right cone with a base area [tex]\( B \)[/tex] and height [tex]\( h \)[/tex], let's walk through the concepts and reasoning required to determine the correct formula.

1. Understanding the Shape:
- A right cone with a circular base has a volume that is calculated using a specific geometric formula.

2. Volume Formula for a Right Cone:
- The volume [tex]\( V \)[/tex] of any cone is given by the formula:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
- Here, the base area is represented by [tex]\( B \)[/tex], and the height of the cone is [tex]\( h \)[/tex].

3. Applying the Given Information:
- We know the base area [tex]\( B \)[/tex] and the height [tex]\( h \)[/tex] of the cone.
- Substituting these values into the general formula for the volume of a cone:
[tex]\[ V = \frac{1}{3} \times B \times h \][/tex]

4. Comparing with Given Options:
- Option A: [tex]\( V = \frac{1}{3} B h \)[/tex]
- Option B: [tex]\( V = \frac{1}{2} B h \)[/tex]
- Option C: [tex]\( V = B h \)[/tex]
- Option D: [tex]\( V = -\frac{1}{3} B h \)[/tex]

5. Identifying the Correct Formula:
- Based on the established geometric formula for the volume of a cone, the correct expression is:
[tex]\[ V = \frac{1}{3} B h \][/tex]
- This matches option A.

Therefore, the correct formula for the volume of a right cone with base area [tex]\( B \)[/tex] and height [tex]\( h \)[/tex] is:

A. [tex]\( V = \frac{1}{3} B h \)[/tex]