Select the correct answer.

A horse-drawn carriage travels [tex]$47 \frac{2}{3}$[/tex] kilometers in [tex]$4 \frac{1}{3}$[/tex] hours. At this rate, how many kilometers does it travel per hour?

A. [tex][tex]$11 \frac{2}{3}$[/tex][/tex] kilometers per hour
B. 11 kilometers per hour
C. 12 kilometers per hour
D. [tex]$10 \frac{2}{3}$[/tex] kilometers per hour



Answer :

To determine the rate of travel in kilometers per hour, we start by converting the mixed fractions into improper fractions for easier calculation.

1. For the total distance traveled:
[tex]\( 47 \frac{2}{3} \)[/tex] kilometers can be converted into an improper fraction.
[tex]\[ 47 \frac{2}{3} = 47 + \frac{2}{3} = \frac{141}{3} + \frac{2}{3} = \frac{141 + 2}{3} = \frac{143}{3} \text{ kilometers} \][/tex]

2. For the total time taken:
[tex]\( 4 \frac{1}{3} \)[/tex] hours can be converted similarly.
[tex]\[ 4 \frac{1}{3} = 4 + \frac{1}{3} = \frac{12}{3} + \frac{1}{3} = \frac{12 + 1}{3} = \frac{13}{3} \text{ hours} \][/tex]

3. Now, we need to find the rate in kilometers per hour by dividing the total distance by the total time.
[tex]\[ \text{Rate} = \frac{\text{Total Distance}}{\text{Total Time}} = \frac{\frac{143}{3}}{\frac{13}{3}} \][/tex]

4. Dividing fractions involves multiplying by the reciprocal of the divisor:
[tex]\[ \frac{\frac{143}{3}}{\frac{13}{3}} = \frac{143}{3} \times \frac{3}{13} = \frac{143 \times 3}{3 \times 13} = \frac{143}{13} = 11 \][/tex]

Hence, the rate of travel is 11 kilometers per hour. Therefore, the correct answer is:
B. 11 kilometers per hour