5. Complete the following table:

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$3^x$[/tex] \\
\hline
-2 & \\
-1 & [tex]$\frac{1}{3}$[/tex] \\
0 & \\
1 & \\
2 & \\
\hline
\end{tabular}



Answer :

Let's fill in the missing values in the table corresponding to [tex]\( x \)[/tex] and [tex]\( 3^x \)[/tex].

First, we are given the following [tex]\( x \)[/tex] values:
- [tex]\( x = -2 \)[/tex]
- [tex]\( x = \log_3 \frac{1}{3} \)[/tex]
- [tex]\( x = 0 \)[/tex]
- [tex]\( x = 1 \)[/tex]
- [tex]\( x = \log_3 3 \)[/tex]

Now, we will compute [tex]\( 3^x \)[/tex] for each of these [tex]\( x \)[/tex] values.

1. For [tex]\( x = -2 \)[/tex]:
[tex]\[ 3^{-2} = \frac{1}{3^2} = \frac{1}{9} \approx 0.111 \][/tex]

2. For [tex]\( x = \log_3 \frac{1}{3} \)[/tex]:
Since the logarithm is the inverse of the exponential function, [tex]\( 3^{\log_3 \frac{1}{3}} = \frac{1}{3} \)[/tex].

3. For [tex]\( x = 0 \)[/tex]:
[tex]\[ 3^0 = 1 \][/tex]

4. For [tex]\( x = 1 \)[/tex]:
[tex]\[ 3^1 = 3 \][/tex]

5. For [tex]\( x = \log_3 3 \)[/tex]:
[tex]\[ \log_3 3 = 1 \quad \text{since} \quad 3^1 = 3 \][/tex]

Now, we can fill the table with the computed values:

[tex]\[ \begin{array}{|c|c|} \hline x & 3^x \\ \hline -2 & 0.111 \\ -1 & 0.333 \\ 0 & 1 \\ 1 & 3 \\ 1 & 3 \\ \hline \end{array} \][/tex]

The values match our computed results. Here, [tex]\(\log_3 \frac{1}{3} = -1\)[/tex] and [tex]\(\log_3 3 = 1\)[/tex].

Completed table is:

[tex]\[ \begin{array}{|c|c|} \hline x & 3^x \\ \hline -2 & 0.111 \\ -1 & 0.333 \\ 0 & 1 \\ 1 & 3 \\ 1 & 3 \\ \hline \end{array} \][/tex]

Therefore, the table is properly filled with the correct values of [tex]\( x \)[/tex] and [tex]\( 3^x \)[/tex].