Find the magnitude and direction (in degrees) of the vector. (Assume [tex]$0^{\circ} \leq \theta\ \textless \ 360^{\circ}$[/tex]. Round the direction to two decimal places.)

[tex]\[
\begin{aligned}
| \mathbf{v} | &= \langle 30, 16 \rangle = 34 \\
\theta &= \square^{\circ}
\end{aligned}
\][/tex]



Answer :

Certainly! Let's go through the process step-by-step to find the magnitude and direction of the given vector [tex]\( \mathbf{v} = \langle 30, 16 \rangle \)[/tex].

### Step 1: Calculate the Magnitude of the Vector
The magnitude of a vector [tex]\( \mathbf{v} \)[/tex] with components [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is given by the formula:
[tex]\[ \|\mathbf{v}\| = \sqrt{x^2 + y^2} \][/tex]

For the vector [tex]\( \mathbf{v} = \langle 30, 16 \rangle \)[/tex]:
[tex]\[ \|\mathbf{v}\| = \sqrt{30^2 + 16^2} \][/tex]

Next, we compute the squares of the components:
[tex]\[ 30^2 = 900 \quad \text{and} \quad 16^2 = 256 \][/tex]

Then, we add these squares:
[tex]\[ 900 + 256 = 1156 \][/tex]

Finally, we take the square root of this sum to find the magnitude:
[tex]\[ \|\mathbf{v}\| = \sqrt{1156} = 34 \][/tex]

So, the magnitude of the vector is:
[tex]\[ \|\mathbf{v}\| = 34 \][/tex]

### Step 2: Calculate the Direction (Angle θ) of the Vector
The direction or angle [tex]\( \theta \)[/tex] of a vector can be found using the arctangent function:
[tex]\[ \theta = \tan^{-1} \left( \frac{y}{x} \right) \][/tex]

For the vector [tex]\( \mathbf{v} = \langle 30, 16 \rangle \)[/tex]:
[tex]\[ \theta = \tan^{-1} \left( \frac{16}{30} \right) \][/tex]

Next, we evaluate the arctangent:
[tex]\[ \theta = \tan^{-1} \left( 0.5333\ldots \right) \][/tex]

This gives us an angle in radians, which we then convert to degrees:
[tex]\[ \theta \approx 28.07^{\circ} \][/tex]

(Note: Make sure to round the direction to two decimal places as stated in the problem.)

### Final Answer
Summarizing our results, we have:

- The magnitude of the vector is:
[tex]\[ \|\mathbf{v}\| = 34 \][/tex]
- The direction of the vector is:
[tex]\[ \theta = 28.07^{\circ} \][/tex]

So, the complete vector description in polar form is:
[tex]\[ \mathbf{v} = 34 \quad \text{at} \quad 28.07^{\circ} \][/tex]