Type the correct answer in the box.

The table below represents the total cost of leasing a car at the end of each month.

\begin{tabular}{|c|c|}
\hline
Month & Cost \\
\hline
1 & [tex]$\$[/tex] 1,859[tex]$ \\
\hline
3 & $[/tex]\[tex]$ 2,577$[/tex] \\
\hline
8 & [tex]$\$[/tex] 4,372[tex]$ \\
\hline
12 & $[/tex]\[tex]$ 5,808$[/tex] \\
\hline
\end{tabular}

Write an equation in slope-intercept form to represent the total cost, [tex]$y$[/tex], of leasing a car for [tex]$x$[/tex] months.



Answer :

Certainly! To write an equation in slope-intercept form to represent the total cost [tex]\( y \)[/tex] of leasing a car for [tex]\( x \)[/tex] months, we need to find the slope ([tex]\( m \)[/tex]) and the y-intercept ([tex]\( b \)[/tex]) of the line described by the given data.

### Step-by-Step Solution:

1. Identify the given points:

The table provides us with the following data points:
- (1, 1859)
- (3, 2577)
- (8, 4372)
- (12, 5808)

2. Calculate the slope ([tex]\( m \)[/tex]):

The slope ([tex]\( m \)[/tex]) is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

We'll use the first data point (1, 1859) and the last data point (12, 5808) to find the slope:
[tex]\[ m = \frac{5808 - 1859}{12 - 1} = \frac{3949}{11} = 359 \][/tex]

3. Calculate the y-intercept ([tex]\( b \)[/tex]):

The y-intercept ([tex]\( b \)[/tex]) can be found using the slope [tex]\( m \)[/tex] and any point on the line. Using the first data point (1, 1859):
[tex]\[ y = mx + b \][/tex]
Substituting [tex]\( y = 1859 \)[/tex], [tex]\( x = 1 \)[/tex], and [tex]\( m = 359 \)[/tex]:
[tex]\[ 1859 = 359 \cdot 1 + b \][/tex]
Solving for [tex]\( b \)[/tex]:
[tex]\[ b = 1859 - 359 = 1500 \][/tex]

4. Write the equation in slope-intercept form:

The slope-intercept form of a line is given by [tex]\( y = mx + b \)[/tex]. So, substituting [tex]\( m \)[/tex] and [tex]\( b \)[/tex] we get:
[tex]\[ y = 359x + 1500 \][/tex]

### Final Answer

The equation in slope-intercept form that represents the total cost [tex]\( y \)[/tex] of leasing a car for [tex]\( x \)[/tex] months is:
[tex]\[ y = 359x + 1500 \][/tex]