Solve the following system of equations:

[tex]\[
\begin{array}{l}
\left\{
\begin{array}{lr}
2x - 5y = 11 & (x = -2, y = -3) \\
3x - 4y = 6 & (y = -3)
\end{array}
\right. \\
\left\{
\begin{array}{lr}
5x - 3y = 0 & (x = -3, y = -5) \\
7x - y = -16 & (y = -5)
\end{array}
\right.
\end{array}
\][/tex]



Answer :

Certainly! Let's solve each system of equations step-by-step.

System 1:

[tex]\[ \left\{ \begin{array}{lr} 2x - 5y = 11 & \\ 3x - 4y = 6 & y = -3 \end{array} \right. \][/tex]

We are given that [tex]\( y = -3 \)[/tex]. We can substitute [tex]\( y \)[/tex] into both equations to find [tex]\( x \)[/tex].

1. Substituting [tex]\( y = -3 \)[/tex] into the first equation:
[tex]\[ 2x - 5(-3) = 11 \\ 2x + 15 = 11 \\ 2x = 11 - 15 \\ 2x = -4 \\ x = -2 \][/tex]

So, the solutions for the first system are [tex]\( x = -2 \)[/tex] and [tex]\( y = -3 \)[/tex].

System 2:

[tex]\[ \left\{ \begin{array}{lr} 5x - 3y = 0 & \\ 7x - y = -16 & y = -5 \end{array} \right. \][/tex]

We are given that [tex]\( y = -5 \)[/tex]. We can substitute [tex]\( y \)[/tex] into both equations to find [tex]\( x \)[/tex].

1. Substituting [tex]\( y = -5 \)[/tex] into the first equation:
[tex]\[ 5x - 3(-5) = 0 \\ 5x + 15 = 0 \\ 5x = -15 \\ x = -3 \][/tex]

So, the solutions for the second system are [tex]\( x = -3 \)[/tex] and [tex]\( y = -5 \)[/tex].

To summarize:

- For the first system of equations: [tex]\(\{2x - 5y = 11\)[/tex], [tex]\(3x - 4y = 6\}\)[/tex], the solution is [tex]\( x = -2 \)[/tex] and [tex]\( y = -3 \)[/tex].
- For the second system of equations: [tex]\(\{5x - 3y = 0\)[/tex], [tex]\(7x - y = -16\}\)[/tex], the solution is [tex]\( x = -3 \)[/tex] and [tex]\( y = -5 \)[/tex].