The values in the table represent a function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-2 & 1 \\
\hline
1 & 3 \\
\hline
4 & -2 \\
\hline
-3 & 0 \\
\hline
0 & 4 \\
\hline
\end{tabular}

Use the drop-down menus to complete the statements:
1. The ordered pair given in the first row in the table can be written using function notation as [tex]$f(-2) = 1$[/tex].
2. [tex]$f(x) = -2$[/tex] when [tex]$x$[/tex] is [tex]$4$[/tex].



Answer :

Let's carefully analyze the given table and complete the statements step-by-step.

The table given is:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -2 & 1 \\ \hline 1 & 3 \\ \hline 4 & -2 \\ \hline -3 & 0 \\ \hline 0 & 4 \\ \hline \end{tabular} \][/tex]

1. The ordered pair given in the first row in the table can be written using function notation as:

- The first row of the table shows that when [tex]\( x = -2 \)[/tex], [tex]\( f(x) = 1 \)[/tex].
- In function notation, this is written as [tex]\( f(-2) = 1 \)[/tex].

2. [tex]\( f(x) = -2 \)[/tex] when [tex]\( x \)[/tex] is :

- We need to find the value of [tex]\( x \)[/tex] where [tex]\( f(x) = -2 \)[/tex].
- Looking at the table, when [tex]\( x = 4 \)[/tex], [tex]\( f(x) = -2 \)[/tex].

Combining these findings:

- The ordered pair given in the first row in the table can be written using function notation as [tex]\( f(-2) = 1 \)[/tex].
- [tex]\( f(x) = -2 \)[/tex] when [tex]\( x \)[/tex] is 4.

Hence, the completed statements are:

1. The ordered pair given in the first row in the table can be written using function notation as [tex]\( f(-2) = 1 \)[/tex].
2. [tex]\( f(x) = -2 \)[/tex] when [tex]\( x \)[/tex] is 4.