Answer :
Let's carefully analyze the given table and complete the statements step-by-step.
The table given is:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -2 & 1 \\ \hline 1 & 3 \\ \hline 4 & -2 \\ \hline -3 & 0 \\ \hline 0 & 4 \\ \hline \end{tabular} \][/tex]
1. The ordered pair given in the first row in the table can be written using function notation as:
- The first row of the table shows that when [tex]\( x = -2 \)[/tex], [tex]\( f(x) = 1 \)[/tex].
- In function notation, this is written as [tex]\( f(-2) = 1 \)[/tex].
2. [tex]\( f(x) = -2 \)[/tex] when [tex]\( x \)[/tex] is :
- We need to find the value of [tex]\( x \)[/tex] where [tex]\( f(x) = -2 \)[/tex].
- Looking at the table, when [tex]\( x = 4 \)[/tex], [tex]\( f(x) = -2 \)[/tex].
Combining these findings:
- The ordered pair given in the first row in the table can be written using function notation as [tex]\( f(-2) = 1 \)[/tex].
- [tex]\( f(x) = -2 \)[/tex] when [tex]\( x \)[/tex] is 4.
Hence, the completed statements are:
1. The ordered pair given in the first row in the table can be written using function notation as [tex]\( f(-2) = 1 \)[/tex].
2. [tex]\( f(x) = -2 \)[/tex] when [tex]\( x \)[/tex] is 4.
The table given is:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -2 & 1 \\ \hline 1 & 3 \\ \hline 4 & -2 \\ \hline -3 & 0 \\ \hline 0 & 4 \\ \hline \end{tabular} \][/tex]
1. The ordered pair given in the first row in the table can be written using function notation as:
- The first row of the table shows that when [tex]\( x = -2 \)[/tex], [tex]\( f(x) = 1 \)[/tex].
- In function notation, this is written as [tex]\( f(-2) = 1 \)[/tex].
2. [tex]\( f(x) = -2 \)[/tex] when [tex]\( x \)[/tex] is :
- We need to find the value of [tex]\( x \)[/tex] where [tex]\( f(x) = -2 \)[/tex].
- Looking at the table, when [tex]\( x = 4 \)[/tex], [tex]\( f(x) = -2 \)[/tex].
Combining these findings:
- The ordered pair given in the first row in the table can be written using function notation as [tex]\( f(-2) = 1 \)[/tex].
- [tex]\( f(x) = -2 \)[/tex] when [tex]\( x \)[/tex] is 4.
Hence, the completed statements are:
1. The ordered pair given in the first row in the table can be written using function notation as [tex]\( f(-2) = 1 \)[/tex].
2. [tex]\( f(x) = -2 \)[/tex] when [tex]\( x \)[/tex] is 4.