Answer :

To rewrite the expression [tex]\( \sqrt{3} \sin(x) - \cos(x) \)[/tex] in terms of sine only, we can use the Pythagorean identity, which relates [tex]\(\cos(x)\)[/tex] and [tex]\(\sin(x)\)[/tex].

1. Recall the Pythagorean identity:
[tex]\[ \cos^2(x) + \sin^2(x) = 1 \][/tex]

2. Solve for [tex]\(\cos(x)\)[/tex]:
[tex]\[ \cos(x) = \sqrt{1 - \sin^2(x)} \][/tex]

Note that [tex]\(\cos(x)\)[/tex] can also be [tex]\(-\sqrt{1 - \sin^2(x)}\)[/tex]. However, for the purpose of rewriting the given expression, we will initially use the positive root.

3. Substitute [tex]\(\cos(x)\)[/tex] in the original expression:
[tex]\[ \sqrt{3} \sin(x) - \cos(x) \implies \sqrt{3} \sin(x) - \sqrt{1 - \sin^2(x)} \][/tex]

4. Simplify further if possible:

This is the intermediate form:
[tex]\[ \sqrt{3} \sin(x) - \sqrt{1 - \sin^2(x)} \][/tex]

However, we need to consider both possible signs for cosine to ensure proper representation. Hence, we should also consider:
[tex]\[ \sqrt{3} \sin(x) - (-\sqrt{1 - \sin^2(x)}) = \sqrt{3} \sin(x) + \sqrt(1 - \sin^2(x)) \][/tex]

5. Substitute back to ensure the simplified version:

Given the form:
[tex]\[ \sqrt{3} \sin(x) - \sqrt(1 - \sin^2(x)) \][/tex]

This indeed simplifies as:
[tex]\[ -\sqrt{\cos^2(x)} + \sqrt{3}\sin(x) \][/tex]

Thus, the expression rewritten in terms of sine only is:
[tex]\[ \sqrt{3} \sin(x) - \sqrt{1 - \sin^2(x)} \][/tex]
And its simplified version is:
[tex]\[ -\sqrt{\cos(x)^2} + \sqrt{3} \sin(x) \][/tex]