Select the best answer for the question.

Use [tex](\ \textless \ , \ \textgreater \ , =)[/tex] to compare [tex]\frac{2}{3}[/tex] and [tex]\frac{3}{4}[/tex].

A. [tex]\frac{2}{3} \ \textless \ \frac{3}{4}[/tex]
B. None of the above
C. [tex]\frac{2}{3} \ \textgreater \ \frac{3}{4}[/tex]
D. [tex]\frac{2}{3} = \frac{3}{4}[/tex]



Answer :

To compare the fractions [tex]\( \frac{2}{3} \)[/tex] and [tex]\( \frac{3}{4} \)[/tex], let's analyze their values in a step-by-step manner.

Step 1: Convert the fractions to decimal form

- [tex]\( \frac{2}{3} \approx 0.6667 \)[/tex] (since [tex]\( 2 \div 3 = 0.6667 \)[/tex])
- [tex]\( \frac{3}{4} = 0.75 \)[/tex] (since [tex]\( 3 \div 4 = 0.75 \)[/tex])

Step 2: Compare the decimal values

Given the decimal equivalents:
- [tex]\( 0.6667 \)[/tex] (which represents [tex]\( \frac{2}{3} \)[/tex])
- [tex]\( 0.75 \)[/tex] (which represents [tex]\( \frac{3}{4} \)[/tex])

Clearly, [tex]\( 0.6667 < 0.75 \)[/tex].

Step 3: Draw the conclusion

Since [tex]\( 0.6667 < 0.75 \)[/tex], we can conclude that:
[tex]\[ \frac{2}{3} < \frac{3}{4} \][/tex]

Therefore, the correct answer is:
A. [tex]\( \frac{2}{3} < \frac{3}{4} \)[/tex]