Determine which integer will make the equation true.

[tex]
\begin{array}{l}
2x + 6 = 12 \\
S = \{3, 4, 5, 6\}
\end{array}
[/tex]

A. 3
B. 4
C. 5
D. 6



Answer :

Alright, let's solve this problem step-by-step.

We need to determine which integer from the set [tex]\( S = \{3, 4, 5, 6\} \)[/tex] will make the equation [tex]\( 2x + 6 = 12 \)[/tex] true.

### Step-by-Step Solution:

1. Write down the equation:
[tex]\[ 2x + 6 = 12 \][/tex]

2. Solve the equation for [tex]\( x \)[/tex]:

- Subtract 6 from both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 2x + 6 - 6 = 12 - 6 \][/tex]
[tex]\[ 2x = 6 \][/tex]

- Divide both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{2x}{2} = \frac{6}{2} \][/tex]
[tex]\[ x = 3 \][/tex]

3. Verify if the solution [tex]\( x \)[/tex] is in the set [tex]\( S \)[/tex]:
The set [tex]\( S \)[/tex] is [tex]\( \{3, 4, 5, 6\} \)[/tex].

4. Check if [tex]\( x = 3 \)[/tex] is in the set [tex]\( S \)[/tex]:
Yes, [tex]\( 3 \)[/tex] is indeed a member of the set [tex]\( S \)[/tex].

### Conclusion:
The integer [tex]\( x = 3 \)[/tex] makes the equation [tex]\( 2x + 6 = 12 \)[/tex] true, and it is an element of the set [tex]\( S \)[/tex].

So, the answer is:
[tex]\[ \boxed{3} \][/tex]