Question 3 of 10

Which equation has the least steep graph?

A. [tex]y = \frac{1}{4}x + 6[/tex]

B. [tex]y = -\frac{3}{4}x - 9[/tex]

C. [tex]y = -7x - 2[/tex]

D. [tex]y = 2x + 1[/tex]



Answer :

To determine which equation has the least steep graph, we need to compare the steepness of each line. The steepness of a line is determined by the absolute value of its slope. Here are the equations given:

A. [tex]\( y = \frac{1}{4} x + 6 \)[/tex]
B. [tex]\( y = -\frac{3}{4} x - 9 \)[/tex]
C. [tex]\( y = -7 x - 2 \)[/tex]
D. [tex]\( y = 2 x + 1 \)[/tex]

First, identify the slope for each equation:

- For equation A, [tex]\( y = \frac{1}{4} x + 6 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is [tex]\( \frac{1}{4} \)[/tex].

- For equation B, [tex]\( y = -\frac{3}{4} x - 9 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is [tex]\( -\frac{3}{4} \)[/tex].

- For equation C, [tex]\( y = -7 x - 2 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is [tex]\( -7 \)[/tex].

- For equation D, [tex]\( y = 2 x + 1 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is [tex]\( 2 \)[/tex].

Next, we find the absolute value of each slope to determine the steepness:

- For equation A: [tex]\( |\frac{1}{4}| = 0.25 \)[/tex].
- For equation B: [tex]\( |-\frac{3}{4}| = 0.75 \)[/tex].
- For equation C: [tex]\( |-7| = 7 \)[/tex].
- For equation D: [tex]\( |2| = 2 \)[/tex].

Now, compare the absolute values:

- Steepness for equation A: [tex]\( 0.25 \)[/tex]
- Steepness for equation B: [tex]\( 0.75 \)[/tex]
- Steepness for equation C: [tex]\( 7 \)[/tex]
- Steepness for equation D: [tex]\( 2 \)[/tex]

The least steep graph corresponds to the smallest absolute value of the slope. Here, the smallest value among [tex]\( 0.25 \)[/tex], [tex]\( 0.75 \)[/tex], [tex]\( 7 \)[/tex], and [tex]\( 2 \)[/tex] is [tex]\( 0.25 \)[/tex].

Thus, the equation with the least steep graph is:

A. [tex]\( y = \frac{1}{4} x + 6 \)[/tex]