\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline -3 & 33 \\
\hline -2 & 17 \\
\hline 0 & -15 \\
\hline 2 & -7 \\
\hline 3 & 27 \\
\hline
\end{tabular}

Use the table of values to find the function.

If [tex]$x=0$[/tex], then [tex]$f(0)=$[/tex]

If [tex][tex]$f(x)=27$[/tex][/tex], then [tex]$x=$[/tex]



Answer :

Let's solve each part of the question step-by-step using the given table of values.

The table of values is:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -3 & 33 \\ \hline -2 & 17 \\ \hline 0 & -15 \\ \hline 2 & -7 \\ \hline 3 & 27 \\ \hline \end{tabular} \][/tex]

1. Find [tex]\( f(0) \)[/tex]

To find [tex]\( f(0) \)[/tex], we need to look at the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 0 \)[/tex]:

From the table:

[tex]\[ x = 0 \implies f(x) = -15 \][/tex]

So, [tex]\( f(0) = -15 \)[/tex].

2. Find [tex]\( x \)[/tex] when [tex]\( f(x) = 27 \)[/tex]

To find the value of [tex]\( x \)[/tex] when [tex]\( f(x) = 27 \)[/tex], we need to look for the row in the table where [tex]\( f(x) \)[/tex] is 27:

From the table:

[tex]\[ f(x) = 27 \implies x = 3 \][/tex]

So, when [tex]\( f(x) = 27 \)[/tex], [tex]\( x = 3 \)[/tex].

Combining both parts, the answers are:

- [tex]\( f(0) = -15 \)[/tex]
- When [tex]\( f(x) = 27 \)[/tex], [tex]\( x = 3 \)[/tex]