Drag the slides to the boxes to form correct pairs. Not all slides will be used.

\begin{tabular}{|c|c|c|c|}
\hline [tex]$\log _{10} x=3$[/tex] & [tex]$\log _5 x=4$[/tex] & [tex]$\log _4 x=2$[/tex] & [tex]$\log _2 x=5$[/tex] \\
\hline [tex]$\log _3 z=1$[/tex] & 1,000 & 625 & 32 \\
\hline
\end{tabular}

[tex]$\square$[/tex] [tex]$\longleftrightarrow$[/tex] [tex]$\square$[/tex]
[tex]$\square$[/tex] [tex]$\square$[/tex]
[tex]$\square$[/tex] [tex]$\square$[/tex]
[tex]$\square$[/tex] [tex]$\square$[/tex]



Answer :

To solve this problem, we need to match each logarithmic expression on the left side with its corresponding value on the right side.

1. [tex]\(\log_{10} x = 3\)[/tex]
- The value of [tex]\(x\)[/tex] for which [tex]\(\log_{10} x = 3\)[/tex] can be found by rewriting the equation in exponential form: [tex]\(x = 10^3\)[/tex].
- Therefore, [tex]\(x = 1000\)[/tex].
- So, [tex]\(\log_{10} x = 3\)[/tex] pairs with [tex]\(1000\)[/tex].

2. [tex]\(\log_{5} x = 4\)[/tex]
- Similarly, rewrite the logarithmic equation as an exponential one: [tex]\(x = 5^4\)[/tex].
- Calculating, [tex]\(5^4 = 625\)[/tex].
- Hence, [tex]\(\log_{5} x = 4\)[/tex] pairs with [tex]\(625\)[/tex].

3. [tex]\(\log_{4} x = 2\)[/tex]
- Again, rewrite the logarithmic equation in its exponential form: [tex]\(x = 4^2\)[/tex].
- Calculating, [tex]\(4^2 = 16\)[/tex].
- There is no 16 in the given set of values, so this logarithmic equation does not pair with any of the provided values.

4. [tex]\(\log_{2} x = 5\)[/tex]
- Rewriting this logarithmic equation in exponential form: [tex]\(x = 2^5\)[/tex].
- Calculating, [tex]\(2^5 = 32\)[/tex].
- Therefore, [tex]\(\log_{2} x = 5\)[/tex] pairs with [tex]\(32\)[/tex].

5. [tex]\(\log_{3} z = 1\)[/tex]
- Rewrite this as an exponential equation: [tex]\(z = 3^1\)[/tex].
- Calculating, [tex]\(3^1 = 3\)[/tex].
- There is no 3 in the given set of values, so this logarithmic equation does not pair with any of the provided values.

Based on these calculations, the correct pairs are:

- [tex]\(\log_{10} x = 3 \longleftrightarrow 1000\)[/tex]
- [tex]\(\log_{5} x = 4 \longleftrightarrow 625\)[/tex]
- [tex]\(\log_{2} x = 5 \longleftrightarrow 32\)[/tex]

Now, filling in the pairs in the box:

[tex]\[ \begin{aligned} &\log_{10} x = 3 \quad \longleftrightarrow \quad 1000 \\ &\log_{5} x = 4 \quad \longleftrightarrow \quad 625 \\ &\log_{2} x = 5 \quad \longleftrightarrow \quad 32 \\ \end{aligned} \][/tex]