Use the table below to fill in the missing values.

[tex]\[
\begin{tabular}{|r|r|}
\hline
$x$ & $f(x)$ \\
\hline
0 & 4 \\
\hline
1 & 8 \\
\hline
2 & 5 \\
\hline
3 & 7 \\
\hline
4 & 0 \\
\hline
5 & 6 \\
\hline
6 & 3 \\
\hline
7 & 9 \\
\hline
8 & 1 \\
\hline
9 & 2 \\
\hline
\end{tabular}
\][/tex]

1. [tex]\( f(2) = \square \)[/tex]

2. [tex]\( f^{-1}(6) = \square \)[/tex]

3. [tex]\( f(f^{-1}(4)) = \square \)[/tex]

4. If [tex]\( f(x) = 9 \)[/tex] then [tex]\( x = \square \)[/tex]



Answer :

Let's go through the problem step by step using the given table.

Given table:

[tex]\[ \begin{array}{|r|r|} \hline x & f(x) \\ \hline 0 & 4 \\ \hline 1 & 8 \\ \hline 2 & 5 \\ \hline 3 & 7 \\ \hline 4 & 0 \\ \hline 5 & 6 \\ \hline 6 & 3 \\ \hline 7 & 9 \\ \hline 8 & 1 \\ \hline 9 & 2 \\ \hline \end{array} \][/tex]

1. Find [tex]\( f(2) \)[/tex]:
Look for the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 2 \)[/tex]. According to the table:
[tex]\[ f(2) = 5 \][/tex]

2. Find [tex]\( f^{-1}(6) \)[/tex]:
[tex]\( f^{-1}(6) \)[/tex] means we need to find the value of [tex]\( x \)[/tex] for which [tex]\( f(x) = 6 \)[/tex]. From the table:
[tex]\[ f(5) = 6 \implies f^{-1}(6) = 5 \][/tex]

3. Find [tex]\( f\left(f^{-1}(4)\right) \)[/tex]:
- First, find [tex]\( f^{-1}(4) \)[/tex]. This means finding [tex]\( x \)[/tex] such that [tex]\( f(x) = 4 \)[/tex]. From the table:
[tex]\[ f(0) = 4 \implies f^{-1}(4) = 0 \][/tex]
- Then, find [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 4 \implies f\left(f^{-1}(4)\right) = 4 \][/tex]

4. If [tex]\( f(x) = 9 \)[/tex], find [tex]\( x \)[/tex]:
We need to find [tex]\( x \)[/tex] such that [tex]\( f(x) = 9 \)[/tex]. According to the table:
[tex]\[ f(7) = 9 \implies x = 7 \][/tex]

Therefore, the filled-in values are:

[tex]\[ \begin{array}{|r|r|} \hline x & f(x) \\ \hline 0 & 4 \\ \hline 1 & 8 \\ \hline 2 & 5 \\ \hline 3 & 7 \\ \hline 4 & 0 \\ \hline 5 & 6 \\ \hline 6 & 3 \\ \hline 7 & 9 \\ \hline 8 & 1 \\ \hline 9 & 2 \\ \hline \end{array} \][/tex]

[tex]\( f(2) = 5 \)[/tex]

[tex]\[ \begin{array}{l} f^{-1}(6) = 5 \\ f\left(f^{-1}(4)\right) = 4 \\ \end{array} \][/tex]

If [tex]\( f(x) = 9 \)[/tex], then [tex]\( x = 7 \)[/tex]