Answer :
Let's go through the problem step by step using the given table.
Given table:
[tex]\[ \begin{array}{|r|r|} \hline x & f(x) \\ \hline 0 & 4 \\ \hline 1 & 8 \\ \hline 2 & 5 \\ \hline 3 & 7 \\ \hline 4 & 0 \\ \hline 5 & 6 \\ \hline 6 & 3 \\ \hline 7 & 9 \\ \hline 8 & 1 \\ \hline 9 & 2 \\ \hline \end{array} \][/tex]
1. Find [tex]\( f(2) \)[/tex]:
Look for the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 2 \)[/tex]. According to the table:
[tex]\[ f(2) = 5 \][/tex]
2. Find [tex]\( f^{-1}(6) \)[/tex]:
[tex]\( f^{-1}(6) \)[/tex] means we need to find the value of [tex]\( x \)[/tex] for which [tex]\( f(x) = 6 \)[/tex]. From the table:
[tex]\[ f(5) = 6 \implies f^{-1}(6) = 5 \][/tex]
3. Find [tex]\( f\left(f^{-1}(4)\right) \)[/tex]:
- First, find [tex]\( f^{-1}(4) \)[/tex]. This means finding [tex]\( x \)[/tex] such that [tex]\( f(x) = 4 \)[/tex]. From the table:
[tex]\[ f(0) = 4 \implies f^{-1}(4) = 0 \][/tex]
- Then, find [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 4 \implies f\left(f^{-1}(4)\right) = 4 \][/tex]
4. If [tex]\( f(x) = 9 \)[/tex], find [tex]\( x \)[/tex]:
We need to find [tex]\( x \)[/tex] such that [tex]\( f(x) = 9 \)[/tex]. According to the table:
[tex]\[ f(7) = 9 \implies x = 7 \][/tex]
Therefore, the filled-in values are:
[tex]\[ \begin{array}{|r|r|} \hline x & f(x) \\ \hline 0 & 4 \\ \hline 1 & 8 \\ \hline 2 & 5 \\ \hline 3 & 7 \\ \hline 4 & 0 \\ \hline 5 & 6 \\ \hline 6 & 3 \\ \hline 7 & 9 \\ \hline 8 & 1 \\ \hline 9 & 2 \\ \hline \end{array} \][/tex]
[tex]\( f(2) = 5 \)[/tex]
[tex]\[ \begin{array}{l} f^{-1}(6) = 5 \\ f\left(f^{-1}(4)\right) = 4 \\ \end{array} \][/tex]
If [tex]\( f(x) = 9 \)[/tex], then [tex]\( x = 7 \)[/tex]
Given table:
[tex]\[ \begin{array}{|r|r|} \hline x & f(x) \\ \hline 0 & 4 \\ \hline 1 & 8 \\ \hline 2 & 5 \\ \hline 3 & 7 \\ \hline 4 & 0 \\ \hline 5 & 6 \\ \hline 6 & 3 \\ \hline 7 & 9 \\ \hline 8 & 1 \\ \hline 9 & 2 \\ \hline \end{array} \][/tex]
1. Find [tex]\( f(2) \)[/tex]:
Look for the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 2 \)[/tex]. According to the table:
[tex]\[ f(2) = 5 \][/tex]
2. Find [tex]\( f^{-1}(6) \)[/tex]:
[tex]\( f^{-1}(6) \)[/tex] means we need to find the value of [tex]\( x \)[/tex] for which [tex]\( f(x) = 6 \)[/tex]. From the table:
[tex]\[ f(5) = 6 \implies f^{-1}(6) = 5 \][/tex]
3. Find [tex]\( f\left(f^{-1}(4)\right) \)[/tex]:
- First, find [tex]\( f^{-1}(4) \)[/tex]. This means finding [tex]\( x \)[/tex] such that [tex]\( f(x) = 4 \)[/tex]. From the table:
[tex]\[ f(0) = 4 \implies f^{-1}(4) = 0 \][/tex]
- Then, find [tex]\( f(0) \)[/tex]:
[tex]\[ f(0) = 4 \implies f\left(f^{-1}(4)\right) = 4 \][/tex]
4. If [tex]\( f(x) = 9 \)[/tex], find [tex]\( x \)[/tex]:
We need to find [tex]\( x \)[/tex] such that [tex]\( f(x) = 9 \)[/tex]. According to the table:
[tex]\[ f(7) = 9 \implies x = 7 \][/tex]
Therefore, the filled-in values are:
[tex]\[ \begin{array}{|r|r|} \hline x & f(x) \\ \hline 0 & 4 \\ \hline 1 & 8 \\ \hline 2 & 5 \\ \hline 3 & 7 \\ \hline 4 & 0 \\ \hline 5 & 6 \\ \hline 6 & 3 \\ \hline 7 & 9 \\ \hline 8 & 1 \\ \hline 9 & 2 \\ \hline \end{array} \][/tex]
[tex]\( f(2) = 5 \)[/tex]
[tex]\[ \begin{array}{l} f^{-1}(6) = 5 \\ f\left(f^{-1}(4)\right) = 4 \\ \end{array} \][/tex]
If [tex]\( f(x) = 9 \)[/tex], then [tex]\( x = 7 \)[/tex]